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Artificial Intelligence: The Deep Network revolution

@ Although the first successes of ANNs were first demonstrated in the 1980’s they only started
to outperform classical optimization and engineering approaches from 2009 on.

@ In 2011 CNNSs trained using backproagation on GPUs achieved for the first time
superhuman performance in a visual pattern recognition contest.
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Deep Networks galore
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Problems and limitations of Artificial Intelligence

Energy Intensive

At this pace, by 2025 the ICT industry will
consume 20% of the entire world’s electricity

[International Renewable Energy Agency, Internet of Things innovation landscape brief]

High cost of data movement
DRAM access is at least 1500x more costly than

a MAC operation in CNN accelerators. rmuetal., 201g]
y

Narrow Al

DNNs programmed to perform a limited set of
tasks.They operate within a pre-determined,

pre-defined range. [medium.com]
y

Algorithmic limitations
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[l am] deeply suspicious of
back-propagation.

| don’t think it's how the brain works.
The future depends on some graduate
student who is deeply suspicious of

everything | have said.

[Geoff Hinton]
y
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Paths forward to Eerformance imgrovements

Neuromorphic

Carbon
nanotubes New models g
and . y
“aphene

computoty

PETs

NTV

I New Materials and Devices

More Efficient Architectures and Packaging
The next 10 years after exascale

[J. Shalf, The future of computing beyond Moore’s Law, 2020]
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Neuromorghic Intelligence: bridging multigle communities

Neuromorphic Intelligence
@ Deeply rooted in neuro-biology and neuroscience

@ Employs the physics of both silicon and memristive devices to
directly emulate neural computation

@ Combines analog, asynchronous digital, and logic circuits
@ Yelds application-specific devices optimal for edge-computing

SCIENTIFIC
SMERIG

1980s

Misha Mahowald [ |
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Artificial vs biological neural networks

Simulating a Neuron Neurons Designed for Feedback

Artificial neural networks

are algorithms that simulate
STANDARD NEURON PYRAMIDAL NEURON abstract brain-inSpired

el dendtes computing architectures using
digital, time-multiplexed
computing hardware.

Net input Activation function
function

Cell body
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Biological neural networks

use the time evolution of the
B~ physical elements in the system,
and their dynamics, to
implement computation.

The physical hardware
substrate IS the algorithm.
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Brain—insgired Comguting: a radical Earadigm shift

P
CcPU ~ MAIN MEMORY
[ CORE ] CORE ]
[ B M )

e | o IS

Exploit physical space
@ Use the physics of the electronic devices to emulate neural dynamics
Exploit all the properties of transistors and memristors

@ Use parallel arrays of processing elements

Maximize fine grain parallelism (no time-multiplexing)
Co-localize memory and computation

y
[Indiveri Sandamirskaya, IEEE Signal Processing Magazine, 2019; Indiveri Liu, Proceedings of IEEE, 2015]
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Brain—insgired Comguting: a radical Earadigm shift

Let time represent itself

@ For interacting with the environment in
real-time.

@ To match the circuit time constants to the
input signal dynamics.

@ For inherently synchronizing with the
real-world natural events.

@ To process sensory signals efficiently.

[Indiveri Sandamirskaya, IEEE Signal Processing Magazine, 2019; Indiveri Liu, Proceedings of IEEE, 2015]
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Time and space in silicon neurons
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anagtio Elasticitx using memristive devices

A (Gilbert) normalizer memristive synapse  Divisive non-linearity “squashes” distributions

circuit and reduces mismatch effects
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[M. Nair et al., Nano Futures, 2017; Payvand et al., Fara
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Analog subthreshold circuits

Advantages

@ Avoid use of digital clock circuitry
@ Avoid large DAC/ADC overhead

@ Minimize power consumption

@ Exploit the full potential of emerging memory technologies

Control multi-level properties with analog pulse heights
Exploit intrinsic non-linearities (srivio et al., 2021]

EXplOit intrinsic Stochasticity [Gaba et al., 2013, Payvand et al., 2018]
Exploit non-volatility properties [serdan et al., 2016, Demirag et al., 2021] |

[Source: IBM]

PCM-trace - [Y. Demirag et al., ISCAS 2021]

Exploit the drift of PCM devices to implement long-lasting eligibility traces. These enable the
construction of powerful learning mechanisms for solving complex tasks by bridging the synaptic

(~ms) and behavioral time-scales (~minutes). [Gerstner et al., 2018; Bellec et al., 2020]
y
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Analog subthreshold circuits
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False mxths about analog neural resgonses

@ Neural responses are slow. Population firing rates of neurons can reliably encode
WRONG weak signal changes ~50 times faster than individual
neurons.
R
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[T. Tchumatchenko et al., 2011]
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False myths about analog neural responses

E-I Balanced populations can encode signals with high

@ Neural responses are slow.
precision and low rates

@ Neurons need to fire at high firing
. . - F Before After
rates to achieve high precision. A B )
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[Denéve at al., 2017]

[Implementing efficient balanced networks with mixed-signal spike-based learning circuits, Blichel et al., ISCAS 2021]
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False mxths about analog neural responses

@ Neural responses are slow. Neurons need to be noisy to propagate neural activity
: ... reliabl
@ Neurons need to fire at high firing y y
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[M.C.W. van Rossum, et al., 2002]
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False mxths about analog neural responses

@ Neural responses are slow. —> Populations of noisy neurons have very fast
response times.

@ Neurons need to fire at high firing = Sparse neural population activity (in space and time)

rates to achieve high precision. can represent signals with high accuracy.

@ Neurons need to be accurateto — To propagate signals using low firing rates, it is
propagate precise information necessary to use inhomogeneous populations of
across layers. neurons.
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Brain insgired sEiking neural network hardware

The perfect recipe d
| [ Soma block

} Spiking output
| Synapse and
4

learning block

@ Mix populations of
mixed-signal silicon
neurons and synapses.

) A Synaptic
Homeostatic adaptation -f' scaling block

@ Add capacitors and volatile
memristors for state
dynamics and memory
traces.

e i

— on-plasttﬂ

@ Sprinkle distributed memory elements for parameter | | &yrl))ses :Pfastlcsynapses
storage (SRAM, TCAM, non-volatile memristors) /\ '

@ Include asynchronous digital circuits for event-based | B§ | 1 low
communication Synapse layout Soma layout

@ Serve with always-on, on-chip, self-supervised [Chicca & Indiveri, Applied Physics Letters 2020]
learning methods
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The Dynamic Neuromorphic Asynchronous Processor

The DYNAP-SE2
@ Standard CMOS 180 nm process

Four cores of 256 AdExp I&F neurons/core
64 synapses/neuron, 4 bit synaptic weight
Four dendritic compartments

Short-Term Plasticity (~ms)

Homeostatic plasticity (~hours)

Synaptic Delays

Multi-cast event-based routing

Tag based TCAM addressing

On-chip bio-amplifiers and filters

On-chip asynchronous delta modulation ADC )
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Agglications: extreme edge Comguting
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Zebra-finch “Bird’s Own Song” classification [Corradi et al., 2015]

Closed-loop bidirectional brain machine interfaces [Boi et al., 2016]

Closed-loop coupled biological-silicon neuron network [serb et al. 2020]

Adaptive pace-maker with neuromorphic CPG network [abu-Hassan et al., 2019]

On-line ECG anomaly detection [Bauer et al., 2019]

On-line classification of EMG signals [ponati et al., 2019]

Closed-Loop Spiking Control on a Neuromorphic Processor Implemented on the iCub [zhao et al., 2020]
Neuromorphic pattern generation circuits for bioelectronic medicine [ponati et al., 2021]

Instantaneous Stereo Depth Estimation of Real-World Stimuli with a Neurom. Stereo-Vision Setup [Risi et al., 2021]
On-line High-Frequency Oscillation (HFO) detection [Burelo, et al., 2021]

Online Detection of Vibration Anomalies Using Balanced Spiking Neural Networks [pennler et al., 2021]
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High-Frequency Oscillations (HFO) in iEEG
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A neuromorphic HFO detection device

Low-Noise Amplifier

Filter bank
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On-line iEEG HFO detection: results
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[Sharifhazileh, Burelo et al.,Nat. Comms 2021]
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Neuromorghic VS conventional comguting

Pros Cons
@ Low latency @ Limited resolution (<8 bits)
@ Ultra low-power (<1 mW) ) @ High variability, noisy )
What are they good for? What are they bad at?
@ Small-scale network emulation @ Large scale network simulation
@ Real-time sensory processing @ High accuracy pattern recognition
@ Sensory-fusion and on-line classification @ High precision number crunching
@ Low-latency decision making ) @ Batch processing of data sets )
|deal technologies for extreme edge-computing applications
Bio-inspired neuromorphic processors complement conventional ANN accelerators. J
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Conclusions

[v] naturc @ Conventional Al increasing power requirements are
unsustainable.

EDITORIAL - 06 FEBRUARY 2018

Big data needs a hardware @ New emerging memory technologies can benefit from

. massively parallel processing architectures.
revolution yP P J

@ Neuroscience and machine learning are uncovering

Artificial intelligence is driving the next wave of innovations in the

semicondaictor tndststry. powerful and robust neural processing methods.

@ This is the perfect time to follow the neuromorphic
engineering approach for starting a hardware
revolution.

DYNAP (160 W)

tt’-.u:ft\.-'\-'are companies make headlines but research on computer hardware could ' )

bring bigger rewards #fCredit: Morris MacMatze ooy

Swallow (45 Q) Boeing 737 (40000 kg)
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Arm: The Software and Hardware Foundation for tinyML
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TinyML for all developers

Acquire valuable ' Enrich data and
G B training data train ML
securely algorithms

OO,

ARDUINO Edge Device Impulse
Real sensors in real
Arduino library t|me
Open source SDK
M Embedded and Test impulse
edge compute with real-time
deployment device data
WebAssembly options Test flows

www.edgeimpulse.com
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Al research 0 @

_ . ®
Advancmg Al Id oo e loT/lloT

o recognition, contextual fusion

h to mak =
researcn 10O make .
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SYNTIANT

Syntiant Corp. is moving artificial intelligence and machine learning from the cloud to edge
devices. Syntiant’s chip solutions merge deep learning with semiconductor design to produce
ultra-low-power, high performance, deep neural network processors. These network processors
enable always-on applications in battery-powered devices, such as smartphones, smart speakers,
earbuds, hearing aids, and laptops. Syntiant's Neural Decision Processors™ offer wake word,
command word, and event detection in a chip for always-on voice and sensor applications.

Founded in 2017 and headquartered in Irvine, California, the company is backed by Amazon,
Applied Materials, Atlantic Bridge Capital, Bosch, Intel Capital, Microsoft, Motorola, and others.
Syntiant was recently named a CES® 2021 Best of Innovation Awards Honoree, shipped over 10V
units worldwide, and unveiled the NDP120 part of the NDP10x family of inference engines for

low-power applications.
g @Syntiantcorp

www.syntiant.com
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Build Smart loT Sensor
Devices From Data

SensiML pioneered TinyML software
tools that auto generate Al code for the
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e End-to-end Al workflow
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