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RISC-V multi-core application processor



Design of Image-based 
Smart Sensors

• Low Power Consumption

• Flexible

• Easy to “program”

• Efficient and Effective
• Going beyond “TinyML” benchmarks
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MicroControllers (MCUs) for Deep Neural Networks (DNNs) based 
Image Processing and Identification on battery powered devices

MCU-centric Smart Camera Systems

Company Proprietary

[ Credits: https://cdn.edureka.co/blog/wp-

content/uploads/2017/05/Deep-Neural-Network-

What-is-Deep-Learning-Edureka.png ]
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Optimized Code Generation targeting single-core and flat memory

• Bare Metal Programming (e.g. CMSIS-NN)

• Software runtime w/ optimized library (e.g. TF micro, STMCubeAI)

• Binary Code Generation (e.g. uTVM)

Typical Design flows for DNN Deployment

Company Proprietary
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Going beyond typical MCU architectures! 

➢ Cannot leverage on existing frameworks for 
efficient DNN deployment on MCU because of 
memory hierarchy and parallel computation.

Our Design mantras for energy-efficient MCU design!

Company Proprietary
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• General purpose RISC-V CPUs but 
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• Not a D$ for 
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• “Manual” memory 

management handling
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DNN 
Operator

Parallel Computation

Company Proprietary
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Parallel DNN Basic Kernels 
Library

• Optimized to run efficiently on 
the 8-core cluster

• Leverages GAP8 ISA-extended 
instructions & vectorization

• Operate on Cluster L1 Data

Parallel Computation

Company Proprietary
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void ParConv (uint8_t* input_L1, uint8_t*
weight_L1, uint8_t* output_L1  )

{ 
core_id = get_core_id();
apply data parallel convolution 

}

GAP8 Optimized SW Basic Kernel 
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Mapping a NN Graph to the GAP8 HW/SW architecture
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Deploy on GAP8

GAP8 Optimized SW Basic Kernel 

• DNN Graph memory requirements do 

not fit the L1 cluster’s memory

• Optimize data transfer from/to the 

cluster parallel engine (no Dcache!)

Main Challenges
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Mapping a NN Graph to the GAP8 HW/SW architecture
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Store data (parameters & input vector) in L2 (or L3)

Mapping a NN Graph to the GAP8 HW/SW architecture
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void ParConv (uint8_t* input_L1, uint8_t*
weight_L1, uint8_t* output_L1  )

{ 
core_id = get_core_id();
apply data parallel convolution 

}

Computation dataflow
Ahead of time

activ
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params

Partition and Load data (parameters & input tensors) to L1

At run time, for any computational node:

GAP8 Optimized SW Basic Kernel 
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Store data (parameters & input vector) in L2 (or L3)

Mapping a NN Graph to the GAP HW/SW architecture
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void ParConv (uint8_t* input_L1, uint8_t*
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{ 
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apply data parallel convolution 

}

Computation dataflow
Ahead of time

Convolution

activ

tensor

params

Partition and Load data (parameters & input tensors) to L1

At run time, for any computational node:

Run data-parallel computation
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GAP8 Optimized SW Basic Kernel 
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Given L1, L2, L3 memory constraints

➢Where to store data (L3/L2) ?
• Dealing with many static (e.g. parameters) or dynamic (e.g. IOs) tensors

➢How to tile the data to transfer to L1?
• Optimal sizing of the tiles to reduce memory latency overhead

• ML/Signal Processing data traffic is predictable at compile time…

➢How to produce an optimized code?
• Double-buffering mechanism

Challenges

Company Proprietary



 

 

static void Conv_Layer0 

( 

 signed char * In,  // input L3 vector 

 signed char * Weights, // input L3 vector 

 signed char * Bias,  // input L3 vector 

 signed char * Out,  // output L3 vector 

){ 

   

  //tile sizes of In, Weights, Bias computed offline 

  //L1 buffer allocated to handle double buffering 

  //  two L1 memory buffers for double buffering 

   

uDMA load first tiles to L2 memory buffer 

 

DMA load first tiles to L1 memory buffer 

 

 for any tile of In, Weights, Bias tensors: 

 

uDMA load next next tiles to L2 memory buffer 

 

    DMA load next tiles to L1 memory buffer 

 

   ParConv() on L1 tile 

   ParReLU() on L1 tile 

   ParPool() on L1 tile 

 

   DMA write results (Out) to L2  

    

   uDMA write prev results to L3  

} 

 

 

…  

 

CNN_ConvolutionPoolAct_SQ8( 

"Conv_Layer0", 

4, 1, 32, 32, 112, 112, 

  KOP_CONV_DW, 3, 3, 1, 1, 1, 1, 1, 

  KOP_NONE, 0, 0, 0, 0, 0, 0, 0, 

  KOP_RELU 

); 

 

CNN_ConvolutionPoolAct_SQ8( 

"Conv_Layer1", 

4, 1, 32, 64, 56, 56, 

  KOP_CONV, 1, 1, 1, 1, 0, 0, 1, 

  KOP_NONE, 0, 0, 0, 0, 0, 0, 0, 

  KOP_RELU 

); 

 

… 
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Our Solution: the Autotiler Tool for TinyML deployment on GAP8

Company Proprietary

Host (x86)

GWT 
Autotiler

Tool

User Kernels: generated function code that interleaves

calls to basic kernels and memory transfers

The AT Model function calls the AT Generators 

APIs corresponding to the graph’s layers  

AT Model

User 
Kernels

Calls to basic 

kernels

• Select the best basic 

kernels

• Compute the tile size of 

any tensor

• Handle memory allocation 

(static and dynamic)
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Autotiler Code Generation example

Company Proprietary
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➢ Operand arguments fits on-chip L2 memory 
(512 kB) but not the L1 memory (64kB)
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Not optimal!

• Increase L2 BW means 
higher energy (and latency)

Autotiler Code Generation example
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Autotiler Code Generation example
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Autotiler Code Generation example
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static void Conv_Layer0 

( 

 signed char * In,  // input L2 vector 

 signed char * Weights, // input L2 vector 

 signed char * Bias,  // input L2 vector 

 signed char * Out,  // output L2 vector 

){ 

   

  //tile sizes of In, Weights, Bias computed offline 

  //L1 buffer allocated to handle double buffering 

  //  two L1 memory buffers for double buffering 

 

DMA load first tiles to L1 memory buffer 

 

 for any tile of In, Weights, Bias tensors: 

     

    DMA load next tiles to L1 memory buffer 

 

   ParConv() on L1 tile 

   ParReLU() on L1 tile 

   ParPool() on L1 tile 

 

   DMA write results (Out) to L2  

 

} 

DMA

DMA

L2 tensors

L1 buffer_0

L1 buffer_1

CPU

Generated User Kernels

Conv_Layer0

Convolution + 
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Autotiler Code Generation example
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static void Conv_Layer0 

( 

 signed char * In,  // input L3 vector 

 signed char * Weights, // input L3 vector 

 signed char * Bias,  // input L3 vector 

 signed char * Out,  // output L3 vector 

){ 

   

  //tile sizes of In, Weights, Bias computed offline 

  //L1 buffer allocated to handle double buffering 

  //  two L1 memory buffers for double buffering 

   

uDMA load first tiles to L2 memory buffer 

 

DMA load first tiles to L1 memory buffer 

 

 for any tile of In, Weights, Bias tensors: 

 

uDMA load next next tiles to L2 memory buffer 

 

    DMA load next tiles to L1 memory buffer 

 

   ParConv() on L1 tile 

   ParReLU() on L1 tile 

   ParPool() on L1 tile 

 

   DMA write results (Out) to L2  

    

   uDMA write prev results to L3  
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The AT engine computes the optimal tiling 
scheme based on:

• Computation dataflow (defined by the AT 
model)

• Memory Constraints (input user defined)

Solution of the Tiling problem

Company Proprietary

𝐓𝒊𝒍𝒆𝑫𝒊𝒎 = argmin𝑇𝑖𝑙𝑖𝑛𝑔𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑 𝐷𝑎𝑡𝑎

𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎

s.t. 𝑈𝑠𝑒𝑑 𝑀𝑒𝑚𝑜𝑟𝑦 < 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
DMA

L2 buffer_0

L1 buffer_0

L1 buffer_1

uDMA

L2 buffer_1

L3

𝐓𝒊𝒍𝒆𝑫𝒊𝒎

Lower is better 

Optimal = 1

GWT 
Autotiler

Tool

AT Model

L1/L2/L3 
memory 

constraints



20

The GWT Autotiler is part of the GAPflow toolset, which is 
included in the GAP SDK (https://github.com/GreenWaves-Technologies/gap_sdk)

• NNtool front-end to produce the AT model from TFLITE or ONNX

• Autotiler generate source code, including graph glue code

• Automatic allocation of dynamic and static graph’s tensors

The GWT Deployment framework including the GWT Autotiler is 
tested over several Image-based benchmarks that runs on GAP8

• Imagenet Classification (Mobilenets)

• Person Detections

• Object Classification (License Plate)

Experimental Setup and Results

Company Proprietary

https://github.com/GreenWaves-Technologies/gap_sdk
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Deep Learning based Image Processing on GAP8

Company Proprietary

$ git clone git@github.com:GreenWaves-

Technologies/image_classification_networks.git

$ make clean all run platform=gvsoc

GAP8 1.2V@175MHz

Credits: https://ai.googleblog.com/2017/06/mobilenets-open-source-models-for.html

❑ GAP8 @ 1.2V, 175MHz Cluster, 

250MHz FC, up to 110mW

❑ from 1.5mJ @66fps to 55mJ@2fps 

per inference (incl. ext memories)

mailto:git@github.com:GreenWaves-Technologies/image_classification_networks.git
https://ai.googleblog.com/2017/06/mobilenets-open-source-models-for.html
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People Spotting a.k.a. Visual 
Wake Words

Person Detection

Company Proprietary

[Credits: Chowdhery, Aakanksha, et al. "Visual wake words dataset." arXiv

preprint arXiv:1906.05721 (2019) ]

Model System Acc. MMAC Params FPS Energy (mJ)

ProxylessNAS GAP8+ GAPflow 94.6 48.15 199k 7.55 7.75

ProxylessNAS [1] TFMicro + STM32F7 94.6 48.15 199k 0.13 3284*

MobilnetV2 [2] STCubeAI + STM32H7 92 20.8 391k 6.8 63.12*

[1] Banbury, Colby, et al. "Micronets: Neural network architectures for deploying tinyml applications on commodity microcontrollers." 

Proceedings of Machine Learning and Systems 3 (2021).

[2] Table 14. STMicroelectronics “UM2611: Artificial Intelligence (AI) and computer vision function pack for STM32H7 microcontrollers” 

*estimate



Automatic License Plate Recognition

❑ 1.1 FPS inference @ 175MHz, performing 687M MAC.

❑ 4.1 MB memory footprint (after 8-bit quantization).

❑ Accuracy: 39% mAP for LP det. & > 99.13% for LP rec.

❑ Max recognition distance: 4m for detection and 2m for 

recognition

❑ 117mW power envelope, 108 mJ per inference.

❑ SoA: 73x less energy w.r.t. previous ALPR system.

Company Proprietary
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We presented our framework to deploy DNN-based Image Target 
Identification on the GAP8 processor

• Optimized Parallel Kernels

• Automated Memory Management Scheme

• Code Generation

• Enable NN computation on MCU beyond tinyML benchmarks

• Our deployment framework can adapt to heterogeneous multi-
core platform (e.g. featuring convolutional accelerators)

Conclusion

Company Proprietary



Thank you!
https://greenwaves-technologies.com/

Manuele Rusci

manuele.rusci@greenwaves-technologies.com

mailto:manuele.rusci@greenwaves-technologies.com
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Automated TinyML

Zero-сode SaaS solution

Create tiny models, ready for embedding,
in just a few clicks!

Compare the benchmarks of our compact 
models to those of TensorFlow and other leading 
neural network frameworks.

Build Fast. Build Once. Never Compromise.



Executive Sponsors



5 © 2020 Arm Limited (or its affiliates)5 © 2020 Arm Limited (or its affiliates)

Optimized models for embedded

Application

Runtime
(e.g. TensorFlow Lite Micro)

Optimized low-level NN libraries
(i.e. CMSIS-NN)

Arm Cortex-M CPUs and microNPUs

Profiling and 
debugging 

tooling such as 
Arm Keil MDK

Connect to 
high-level 

frameworks

1

Supported by
end-to-end tooling

2

2

RTOS such as Mbed OS

Connect to
Runtime

3

3

Arm: The Software and Hardware Foundation for tinyML
1

AI Ecosystem 
Partners

Resources: developer.arm.com/solutions/machine-learning-on-arm

Stay Connected

@ArmSoftwareDevelopers

@ArmSoftwareDev



TinyML for all developers

www.edgeimpulse.com

Test

Edge Device Impulse

Dataset

Embedded and
edge compute 

deployment 
options

Acquire valuable 
training data 

securely

Test impulse 
with real-time 
device data 
flows

Enrich data and 
train ML 
algorithms

Real sensors in real 
time

Open source SDK



Automotive

IoT/IIoT

Mobile

Cloud

Power efficiency Efficient learningPersonalization

Action
Reinforcement learning 
for decision making

Perception
 Object detection, speech 
recognition, contextual fusion

Reasoning
Scene understanding, language 
understanding, behavior prediction

Advancing AI 
research to make 

efficient AI ubiquitous

A platform to scale AI 
across the industry

Edge cloud

Model design, 
compression, quantization, 

algorithms, efficient 
hardware, software tool

Continuous learning, 
contextual, always-on, 

privacy-preserved, 
distributed learning

Robust learning 
through minimal data, 
unsupervised learning, 

on-device learning

Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.



Syntiant Corp. is moving artificial intelligence and machine learning from the cloud to edge 
devices. Syntiant’s chip solutions merge deep learning with semiconductor design to produce 
ultra-low-power, high performance, deep neural network processors. These network processors 
enable always-on applications in battery-powered devices, such as smartphones, smart speakers, 
earbuds, hearing aids, and laptops. Syntiant's Neural Decision ProcessorsTM offer wake word, 
command word, and event detection in a chip for always-on voice and sensor applications.

Founded in 2017 and headquartered in Irvine, California, the company is backed by Amazon, 
Applied Materials, Atlantic Bridge Capital, Bosch, Intel Capital, Microsoft, Motorola, and others. 
Syntiant was recently named a CES® 2021 Best of Innovation Awards Honoree, shipped over 10M 
units worldwide, and unveiled the NDP120 part of the NDP10x family of inference engines for 
low-power applications. 

www.syntiant.com @Syntiantcorp 
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www.infineon.com
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Adaptive AI for the Intelligent Edge

Latentai.com



sensiml.com

Build Smart IoT Sensor 
Devices From Data
SensiML pioneered TinyML software 
tools that auto generate AI code for the 
intelligent edge. 

• End-to-end AI workflow
• Multi-user auto-labeling of time-series data
• Code transparency and customization at each 

step in the pipeline

We enable the creation of production-
grade smart sensor devices.
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