
tinyML EMEA Technical Forum 2021 Proceedings

June 7 – 10, 2021
Virtual Event

Presented by:

Manuele Rusci
GreenWaves Technologies

Image-based Target Identification on a tiny
RISC-V multi-core application processor

Design of Image-based
Smart Sensors

• Low Power Consumption

• Flexible

• Easy to “program”

• Efficient and Effective
• Going beyond “TinyML” benchmarks

3

MicroControllers (MCUs) for Deep Neural Networks (DNNs) based
Image Processing and Identification on battery powered devices

MCU-centric Smart Camera Systems

Company Proprietary

[Credits: https://cdn.edureka.co/blog/wp-

content/uploads/2017/05/Deep-Neural-Network-

What-is-Deep-Learning-Edureka.png]

CAT

Input 𝑥

Output y

𝐟(𝐱)

Low Power and Low Cost

SW Programmability

Adapt and Improve

4

Optimized Code Generation targeting single-core and flat memory

• Bare Metal Programming (e.g. CMSIS-NN)

• Software runtime w/ optimized library (e.g. TF micro, STMCubeAI)

• Binary Code Generation (e.g. uTVM)

Typical Design flows for DNN Deployment

Company Proprietary

UART

I2C

CPI

SPI

HyperBus

GPIO

P
eripheral D

M
A On-Chip

Memory

Single-

Core

CPU

I$

D$
Conv_Layer(char * In, char * Filter,

char * Out);

Conv_Layer(char * In, char * Filter,

char * Out);

Conv_Layer(char * In, char * Filter,

char * Out);

Inference_tak(

)

In = input_data;

Filter = coeff_0;

Out = int_buffer_0;

In = int_buffer_0;

Filter = coeff_1;

Out = int_buffer_1;

In = int_buffer_1;

Filter = coeff_2;

Out = int_buffer_0;

5

Going beyond typical MCU architectures!

➢ Cannot leverage on existing frameworks for
efficient DNN deployment on MCU because of
memory hierarchy and parallel computation.

Our Design mantras for energy-efficient MCU design!

Company Proprietary

DMA

UART

I2C

CPI

SPI

HyperBus

GPIO

M
icro D

M
A L2

Memory

512kB

L1 Cluster TCDM

Memory (64kB)

Core

0

Core

1

Core

2

Core

3

Core

5

Core

6

Core

7

Core

8

Core

FC

L1

Mem

FC

Octa Core Cluster

Multicore Processing

Tightly Coupled

Data Memory
DMA

• General purpose RISC-V CPUs but

optionally CNN accelerators

• DSP-oriented ISA

• Not a D$ for

power/area reason

• “Manual” memory

management handling

6

DNN
Operator

Parallel Computation

Company Proprietary

Convolution

activ

tensor

activ

tensor

params

DMA
L1 Cluster TCDM

Memory (64kB)

Core

0

Core

1

Core

2

Core

3

Core

5

Core

6

Core

7

Core

8

Octa Core Cluster

map

7

Parallel DNN Basic Kernels
Library

• Optimized to run efficiently on
the 8-core cluster

• Leverages GAP8 ISA-extended
instructions & vectorization

• Operate on Cluster L1 Data

Parallel Computation

Company Proprietary

Convolution

DMA
L1 Cluster TCDM

Memory (64kB)

Core

0

Core

1

Core

2

Core

3

Core

5

Core

6

Core

7

Core

8

Octa Core Cluster

void ParConv (uint8_t* input_L1, uint8_t*
weight_L1, uint8_t* output_L1)

{
core_id = get_core_id();
apply data parallel convolution

}

GAP8 Optimized SW Basic Kernel

DMA

8

Mapping a NN Graph to the GAP8 HW/SW architecture

Company Proprietary

UART

I2C

CPI

SPI

HyperBus

GPIO

M
icro D

M
A L2

Memory

512kB

L1 Cluster TCDM

Memory (64kB)

Core

0

Core

1

Core

2

Core

3

Core

5

Core

6

Core

7

Core

8

Core

FC

L1

Mem

FC

Octa Core Cluster

L3 RAM

Memory

8MB

L3 FLASH

Memory

20MB

void ParConv (uint8_t* input_L1, uint8_t*
weight_L1, uint8_t* output_L1)

{
core_id = get_core_id();
apply data parallel convolution

}

Convolution Convolution

activ

tensor

activ

tensor

activ

tensor

params params
Deploy on GAP8

GAP8 Optimized SW Basic Kernel

• DNN Graph memory requirements do

not fit the L1 cluster’s memory

• Optimize data transfer from/to the

cluster parallel engine (no Dcache!)

Main Challenges

DMA

9

Mapping a NN Graph to the GAP8 HW/SW architecture

Company Proprietary

UART

I2C

CPI

SPI

HyperBus

GPIO

M
icro D

M
A L2

Memory

512kB

L1 Cluster TCDM

Memory (64kB)

Core

0

Core

1

Core

2

Core

3

Core

5

Core

6

Core

7

Core

8

Core

FC

L1

Mem

FC

Octa Core Cluster

L3 RAM

Memory

8MB

L3 FLASH

Memory

20MB

void ParConv (uint8_t* input_L1, uint8_t*
weight_L1, uint8_t* output_L1)

{
core_id = get_core_id();
apply data parallel convolution

}

Computation dataflow

Convolution

activ

tensor

activ

tensor

params

GAP8 Optimized SW Basic Kernel

DMA

10

Store data (parameters & input vector) in L2 (or L3)

Mapping a NN Graph to the GAP8 HW/SW architecture

Company Proprietary

UART

I2C

CPI

SPI

HyperBus

GPIO

M
icro D

M
A L2

Memory

512kB

L1 Cluster TCDM

Memory (64kB)

Core

0

Core

1

Core

2

Core

3

Core

5

Core

6

Core

7

Core

8

Core

FC

L1

Mem

FC

Octa Core Cluster

L3 RAM

Memory

8MB

L3 FLASH

Memory

20MB

void ParConv (uint8_t* input_L1, uint8_t*
weight_L1, uint8_t* output_L1)

{
core_id = get_core_id();
apply data parallel convolution

}

Computation dataflow
Ahead of time

activ

tensor

params

Partition and Load data (parameters & input tensors) to L1

At run time, for any computational node:

GAP8 Optimized SW Basic Kernel

DMA

11

Store data (parameters & input vector) in L2 (or L3)

Mapping a NN Graph to the GAP HW/SW architecture

Company Proprietary

UART

I2C

CPI

SPI

HyperBus

GPIO

M
icro D

M
A L2

Memory

512kB

L1 Cluster TCDM

Memory (64kB)

Core

0

Core

1

Core

2

Core

3

Core

5

Core

6

Core

7

Core

8

Core

FC

L1

Mem

FC

Octa Core Cluster

L3 RAM

Memory

8MB

L3 FLASH

Memory

20MB

void ParConv (uint8_t* input_L1, uint8_t*
weight_L1, uint8_t* output_L1)

{
core_id = get_core_id();
apply data parallel convolution

}

Computation dataflow
Ahead of time

Convolution

activ

tensor

params

Partition and Load data (parameters & input tensors) to L1

At run time, for any computational node:

Run data-parallel computation

Store data (output tensors) back in L2 (or L3)

GAP8 Optimized SW Basic Kernel

12

Given L1, L2, L3 memory constraints

➢Where to store data (L3/L2) ?
• Dealing with many static (e.g. parameters) or dynamic (e.g. IOs) tensors

➢How to tile the data to transfer to L1?
• Optimal sizing of the tiles to reduce memory latency overhead

• ML/Signal Processing data traffic is predictable at compile time…

➢How to produce an optimized code?
• Double-buffering mechanism

Challenges

Company Proprietary

static void Conv_Layer0

(

 signed char * In, // input L3 vector

 signed char * Weights, // input L3 vector

 signed char * Bias, // input L3 vector

 signed char * Out, // output L3 vector

){

 //tile sizes of In, Weights, Bias computed offline

 //L1 buffer allocated to handle double buffering

 // two L1 memory buffers for double buffering

uDMA load first tiles to L2 memory buffer

DMA load first tiles to L1 memory buffer

 for any tile of In, Weights, Bias tensors:

uDMA load next next tiles to L2 memory buffer

 DMA load next tiles to L1 memory buffer

 ParConv() on L1 tile

 ParReLU() on L1 tile

 ParPool() on L1 tile

 DMA write results (Out) to L2

 uDMA write prev results to L3

}

…

CNN_ConvolutionPoolAct_SQ8(

"Conv_Layer0",

4, 1, 32, 32, 112, 112,

 KOP_CONV_DW, 3, 3, 1, 1, 1, 1, 1,

 KOP_NONE, 0, 0, 0, 0, 0, 0, 0,

 KOP_RELU

);

CNN_ConvolutionPoolAct_SQ8(

"Conv_Layer1",

4, 1, 32, 64, 56, 56,

 KOP_CONV, 1, 1, 1, 1, 0, 0, 1,

 KOP_NONE, 0, 0, 0, 0, 0, 0, 0,

 KOP_RELU

);

…

13

Our Solution: the Autotiler Tool for TinyML deployment on GAP8

Company Proprietary

Host (x86)

GWT
Autotiler

Tool

User Kernels: generated function code that interleaves

calls to basic kernels and memory transfers

The AT Model function calls the AT Generators

APIs corresponding to the graph’s layers

AT Model

User
Kernels

Calls to basic

kernels

• Select the best basic

kernels

• Compute the tile size of

any tensor

• Handle memory allocation

(static and dynamic)

14

Autotiler Code Generation example

Company Proprietary

L2

Memory

512kB

L1 Cluster TCDM

Memory (64kB)

Core

0

Core

1

Core

2

Core

3

Core

5

Core

6

Core

7

Core

8

Assuming L2 as working memory

Convolution +

ReLU + Pooling

fused convolutional layer

➢ Operand arguments fits on-chip L2 memory
(512 kB) but not the L1 memory (64kB)

15

Not optimal!

• Increase L2 BW means
higher energy (and latency)

Autotiler Code Generation example

Company Proprietary

C
o

n
v
o

lu
ti

o
n

R
e
L
U

P
o

o
l

L2

Memory

512kB

L1 Cluster TCDM

Memory (64kB)

Core

0

Core

1

Core

2

Core

3

Core

5

Core

6

Core

7

Core

8

L2

Memory

L1

Cluster

L1

Cluster

L1

Cluster

L2

Memory

L1

Cluster

L1

Cluster

L2

Memory

L1

Cluster

L2

Memory

Assuming L2 as working memory

Data

Convolution +

ReLU + Pooling

16

Autotiler Code Generation example

Company Proprietary

C
o

n
v
o

lu
ti

o
n

R
e
L
U

P
o

o
l

L2

Memory

512kB

L1 Cluster TCDM

Memory (64kB)

Core

0

Core

1

Core

2

Core

3

Core

5

Core

6

Core

7

Core

8

L2

Memory

L1

Cluster

L1

Cluster

L2

Memory

Saving Memory BW!

L1

Cluster

L1

Cluster

Assuming L2 as working memory

Data

Convolution +

ReLU + Pooling

17

Autotiler Code Generation example

Company Proprietary

C
o

n
v

R
e
L
U

P
o

o
l

L2

Memory

512kB

L1 Cluster TCDM

Memory (64kB)

Core

0

Core

1

Core

2

Core

3

Core

5

Core

6

Core

7

Core

8

static void Conv_Layer0

(

 signed char * In, // input L2 vector

 signed char * Weights, // input L2 vector

 signed char * Bias, // input L2 vector

 signed char * Out, // output L2 vector

){

 //tile sizes of In, Weights, Bias computed offline

 //L1 buffer allocated to handle double buffering

 // two L1 memory buffers for double buffering

DMA load first tiles to L1 memory buffer

 for any tile of In, Weights, Bias tensors:

 DMA load next tiles to L1 memory buffer

 ParConv() on L1 tile

 ParReLU() on L1 tile

 ParPool() on L1 tile

 DMA write results (Out) to L2

}

DMA

DMA

L2 tensors

L1 buffer_0

L1 buffer_1

CPU

Generated User Kernels

Conv_Layer0

Convolution +

ReLU + Pooling

18

Autotiler Code Generation example

Company Proprietary

L2

Memory

512kB

L1 Cluster TCDM

Memory (64kB)

Core

0

Core

1

Core

2

Core

3

Core

5

Core

6

Core

7

Core

8

DMA

Enables larger kernels at low- overhead transfer cost

L3 RAM

Memory

8MB

static void Conv_Layer0

(

 signed char * In, // input L3 vector

 signed char * Weights, // input L3 vector

 signed char * Bias, // input L3 vector

 signed char * Out, // output L3 vector

){

 //tile sizes of In, Weights, Bias computed offline

 //L1 buffer allocated to handle double buffering

 // two L1 memory buffers for double buffering

uDMA load first tiles to L2 memory buffer

DMA load first tiles to L1 memory buffer

 for any tile of In, Weights, Bias tensors:

uDMA load next next tiles to L2 memory buffer

 DMA load next tiles to L1 memory buffer

 ParConv() on L1 tile

 ParReLU() on L1 tile

 ParPool() on L1 tile

 DMA write results (Out) to L2

 uDMA write prev results to L3

}

C
o

n
v

R
e
L
U

P
o

o
l

DMA
L2 buffer_0

L1 buffer_0

L1 buffer_1

CPU

L3 tensors

uDMA

L2 buffer_1

Conv_Layer0

Convolution +

ReLU + Pooling

Generated User Kernels

19

The AT engine computes the optimal tiling
scheme based on:

• Computation dataflow (defined by the AT
model)

• Memory Constraints (input user defined)

Solution of the Tiling problem

Company Proprietary

𝐓𝒊𝒍𝒆𝑫𝒊𝒎 = argmin𝑇𝑖𝑙𝑖𝑛𝑔𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑 =
𝑇𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑟𝑒𝑑 𝐷𝑎𝑡𝑎

𝑇𝑜𝑡𝑎𝑙 𝐷𝑎𝑡𝑎

s.t. 𝑈𝑠𝑒𝑑 𝑀𝑒𝑚𝑜𝑟𝑦 < 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒
DMA

L2 buffer_0

L1 buffer_0

L1 buffer_1

uDMA

L2 buffer_1

L3

𝐓𝒊𝒍𝒆𝑫𝒊𝒎

Lower is better

Optimal = 1

GWT
Autotiler

Tool

AT Model

L1/L2/L3
memory

constraints

20

The GWT Autotiler is part of the GAPflow toolset, which is
included in the GAP SDK (https://github.com/GreenWaves-Technologies/gap_sdk)

• NNtool front-end to produce the AT model from TFLITE or ONNX

• Autotiler generate source code, including graph glue code

• Automatic allocation of dynamic and static graph’s tensors

The GWT Deployment framework including the GWT Autotiler is
tested over several Image-based benchmarks that runs on GAP8

• Imagenet Classification (Mobilenets)

• Person Detections

• Object Classification (License Plate)

Experimental Setup and Results

Company Proprietary

https://github.com/GreenWaves-Technologies/gap_sdk

21

Deep Learning based Image Processing on GAP8

Company Proprietary

$ git clone git@github.com:GreenWaves-

Technologies/image_classification_networks.git

$ make clean all run platform=gvsoc

GAP8 1.2V@175MHz

Credits: https://ai.googleblog.com/2017/06/mobilenets-open-source-models-for.html

❑ GAP8 @ 1.2V, 175MHz Cluster,

250MHz FC, up to 110mW

❑ from 1.5mJ @66fps to 55mJ@2fps

per inference (incl. ext memories)

mailto:git@github.com:GreenWaves-Technologies/image_classification_networks.git
https://ai.googleblog.com/2017/06/mobilenets-open-source-models-for.html

22

People Spotting a.k.a. Visual
Wake Words

Person Detection

Company Proprietary

[Credits: Chowdhery, Aakanksha, et al. "Visual wake words dataset." arXiv

preprint arXiv:1906.05721 (2019)]

Model System Acc. MMAC Params FPS Energy (mJ)

ProxylessNAS GAP8+ GAPflow 94.6 48.15 199k 7.55 7.75

ProxylessNAS [1] TFMicro + STM32F7 94.6 48.15 199k 0.13 3284*

MobilnetV2 [2] STCubeAI + STM32H7 92 20.8 391k 6.8 63.12*

[1] Banbury, Colby, et al. "Micronets: Neural network architectures for deploying tinyml applications on commodity microcontrollers."

Proceedings of Machine Learning and Systems 3 (2021).

[2] Table 14. STMicroelectronics “UM2611: Artificial Intelligence (AI) and computer vision function pack for STM32H7 microcontrollers”

*estimate

Automatic License Plate Recognition

❑ 1.1 FPS inference @ 175MHz, performing 687M MAC.

❑ 4.1 MB memory footprint (after 8-bit quantization).

❑ Accuracy: 39% mAP for LP det. & > 99.13% for LP rec.

❑ Max recognition distance: 4m for detection and 2m for

recognition

❑ 117mW power envelope, 108 mJ per inference.

❑ SoA: 73x less energy w.r.t. previous ALPR system.

Company Proprietary

24

We presented our framework to deploy DNN-based Image Target
Identification on the GAP8 processor

• Optimized Parallel Kernels

• Automated Memory Management Scheme

• Code Generation

• Enable NN computation on MCU beyond tinyML benchmarks

• Our deployment framework can adapt to heterogeneous multi-
core platform (e.g. featuring convolutional accelerators)

Conclusion

Company Proprietary

Thank you!
https://greenwaves-technologies.com/

Manuele Rusci

manuele.rusci@greenwaves-technologies.com

mailto:manuele.rusci@greenwaves-technologies.com

Premier Sponsor

Automated TinyML

Zero-сode SaaS solution

Create tiny models, ready for embedding,
in just a few clicks!

Compare the benchmarks of our compact
models to those of TensorFlow and other leading
neural network frameworks.

Build Fast. Build Once. Never Compromise.

Executive Sponsors

5 © 2020 Arm Limited (or its affiliates)5 © 2020 Arm Limited (or its affiliates)

Optimized models for embedded

Application

Runtime
(e.g. TensorFlow Lite Micro)

Optimized low-level NN libraries
(i.e. CMSIS-NN)

Arm Cortex-M CPUs and microNPUs

Profiling and
debugging

tooling such as
Arm Keil MDK

Connect to
high-level

frameworks

1

Supported by
end-to-end tooling

2

2

RTOS such as Mbed OS

Connect to
Runtime

3

3

Arm: The Software and Hardware Foundation for tinyML
1

AI Ecosystem
Partners

Resources: developer.arm.com/solutions/machine-learning-on-arm

Stay Connected

@ArmSoftwareDevelopers

@ArmSoftwareDev

TinyML for all developers

www.edgeimpulse.com

Test

Edge Device Impulse

Dataset

Embedded and
edge compute

deployment
options

Acquire valuable
training data

securely

Test impulse
with real-time
device data
flows

Enrich data and
train ML
algorithms

Real sensors in real
time

Open source SDK

Automotive

IoT/IIoT

Mobile

Cloud

Power efficiency Efficient learningPersonalization

Action
Reinforcement learning
for decision making

Perception
 Object detection, speech
recognition, contextual fusion

Reasoning
Scene understanding, language
understanding, behavior prediction

Advancing AI
research to make

efficient AI ubiquitous

A platform to scale AI
across the industry

Edge cloud

Model design,
compression, quantization,

algorithms, efficient
hardware, software tool

Continuous learning,
contextual, always-on,

privacy-preserved,
distributed learning

Robust learning
through minimal data,
unsupervised learning,

on-device learning

Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

Syntiant Corp. is moving artificial intelligence and machine learning from the cloud to edge
devices. Syntiant’s chip solutions merge deep learning with semiconductor design to produce
ultra-low-power, high performance, deep neural network processors. These network processors
enable always-on applications in battery-powered devices, such as smartphones, smart speakers,
earbuds, hearing aids, and laptops. Syntiant's Neural Decision ProcessorsTM offer wake word,
command word, and event detection in a chip for always-on voice and sensor applications.

Founded in 2017 and headquartered in Irvine, California, the company is backed by Amazon,
Applied Materials, Atlantic Bridge Capital, Bosch, Intel Capital, Microsoft, Motorola, and others.
Syntiant was recently named a CES® 2021 Best of Innovation Awards Honoree, shipped over 10M
units worldwide, and unveiled the NDP120 part of the NDP10x family of inference engines for
low-power applications.

www.syntiant.com @Syntiantcorp

Platinum Sponsors

10

www.infineon.com

Gold Sponsors

Adaptive AI for the Intelligent Edge

Latentai.com

sensiml.com

Build Smart IoT Sensor
Devices From Data
SensiML pioneered TinyML software
tools that auto generate AI code for the
intelligent edge.

• End-to-end AI workflow
• Multi-user auto-labeling of time-series data
• Code transparency and customization at each

step in the pipeline

We enable the creation of production-
grade smart sensor devices.

Silver Sponsors

Copyright Notice
The presentation(s) in this publication comprise the proceedings of tinyML® EMEA Technical Forum
2021. The content reflects the opinion of the authors and their respective companies. This version of the
presentation may differ from the version that was presented at tinyML EMEA. The inclusion of
presentations in this publication does not constitute an endorsement by tinyML Foundation or the
sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of
the authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyML.org

