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Advancing research to make Al ubiquitous
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loT Mobile Automotive Cloud

Action

Reinforcement learning
for decision making

Perception

Object detection, speech
recognition, contextual fusion

Reasoning

Scene understanding, language
understanding, behavior prediction
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Power efficiency Personalization Efficient learning

We are creating platform innovations to scale Al across the industry
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Energy-Efficient machine learning and the
computational budget gap

The Model-Efficiency Pipeline reduces the cost of
on-device inference

B NAS @ Compression Il Quantization >

Qualcomm Innovation Center, Inc. open sources
through Al Model Efficiency Toolkit (AIMET)

What's next in energy-efficient Al




Smartphone Smart homes Video conferencing Autonomous vehicles

Smart factories

Guided
execution

@x

Al is being used all around us Al video analysis is on the rise

increasing productivity, enhancing collaboration, Trend toward more cameras, higher resolution,
and transforming industries and increased frame rate across devices




2025:

Y o N=100T=10%
Deep neural networks < 2021 Exremel
~ 10" large neural
§ are energy hungry C networks (N=1.6T)
O 10" 1 2017: Very large neural
:° and growing fast o networks (N=1378)
5" Alis being powered by the explosive L kel
8 108 growth of deep neural networks |
< 2009: Hinton’s Deep
® . . Belief Net (+/- N=10M)
= 10 "~ 1988:
NetTalk
10° (+/- N=20K)
1o° ' 1943: First NN (+/- N=10)

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030

Processing, Image and Video Processing

2025 ‘ Increasingly large and complex neural networks for Natural Language

Source: Welling




The challenge of
Al workloads

Very compute
intensive

Large,
. complicated neural ©
network models

Constrained mobile
environment

Must be thermally
efficient for sleek,
ultra-light designs

quer and thermal_
efficiency are _essentlal
for on-device Al

Q Complex
(N

concurrencies

Requires long battery
life for all-day use

ﬁa Real-time Q

‘ Always-on C©

Storage/memory
bandwidth limitations



The Deep Learning Budget Gap

Trend 1: Neural Network Applications

Increasingly complex
Neural Networks:
Image, NLP, video,
ensembles, higher
resolution, ...

Computational Budget [ops/s]

2016 2018 2020 2022




The Deep Learning Budget Gap

Trend 1:

Increasingly complex
Neural Networks:
Image, NLP, video,
ensembles, higher
resolution, ...

Trend 2:
Faster, more efficient

hardware platforms
close the Budget Gap

Budget Gap

Mobile AIP in 1W range

Computational Budget [ops/s]

m® Snapdragon™ 865 running on the ASUS ROG Phone 3 20 1 8
m® Snapdragon™ 780 running on the Oneplus 9 Pro
are products of Qualcomm Technologies, Inc. and/or its subsidiaries.
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The Deep Learning Budget Gap

Neural Network Applications

Trend 1:

Increasingly complex
Neural Networks:
Image, NLP, video,
ensembles, higher
resolution, ...

Trend 2:
Faster, more efficient

e

hardware platforms
close the Budget Gap

Budget Gap

Tiny AIP in 10mW range

Computational Budget [ops/s]

2016 2018 2020 2022




The Deep Learning Budget Gap

Trend 1:

Increasingly complex
Neural Networks:
Image, NLP, video,
ensembles, higher
resolution, ...

Trend 2:
Faster, more efficient

hardware platforms
close the Budget Gap

Trend 3:

Faster, optimized
Neural Networks and
Applications close the
Budget Gap

Efficient Neural Networks

Neural Network Applications

4

Mobile AIP in 1W range

Computational Budget [ops/s]

m® Snapdragon™ 865 running on the ASUS ROG Phone 3 20 1 8
m® Snapdragon™ 780 running on the Oneplus 9 Pro
are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

g/en/inference-mobile-10/
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Trend 3: The Model-
Efficiency Pipeline
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! The Model- \
l‘ Efficiency Pipeline :
- A

Multiple axes to shrink

Al models and run them
efficiently on hardware

Neural R :
architecture * ccgra g
search Quantization
N N
N P 4
LS Pruning and & &

> Model -
Compression



Neural Architecture Search: automated design of on-device optimal networks

from scratch is
expensive!

~4k USD per network using commercial cloud services

Training networks { >2 GPU months to train a single SotA network on ImageNet }




Neural Architecture Search: automated design of on-device optimal networks

from scratch is

LU [0 >2 GPU months to train a single SotA network on ImageNet
expensive! ~4k USD per network using commercial cloud services

Manual network
design requires
training many
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networks from scratch
for every device
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Neural Architecture Search: automated design of on-device optimal networks

from scratch is

LU [0 >2 GPU months to train a single SotA network on ImageNet
expensive! ~4k USD per network using commercial cloud services

Manual network
design requires
training many
networks from scratch

rt rt

Spec A, Platform A Spec B, Platform B Spec C, Platform C

for every device

e

Solution
Cheap, scalable Neural Architecture Search reduces design
and training costs of networks optimized for specific devices




Lack diverse search

Hard to search in diverse spaces, with different
block-types, attention, and activations

Repeated training for every new scenario

EXiSting NAS | @ Il;li?thOSt " .
SOIUtions do nOt >40,000 epochs per platl?‘orm
address all the 50 not scale
challenges *

Repeated training for every device
>40,000 epochs per platform

Unreliable hardware models

Requires differentiable cost-functions
Repeated training phase for every new device

20



Introducing new Al research

DONNA

Distilling Optimal Neural
Network Architectures

Efficient NAS with hardware-aware
optimization

Finds pareto-optimal architectures
in terms of accuracy-latency at low
cost

Diverse search to find

the best models
Supports diverse spaces with different cell-

types, attention, and activation functions
(ReLU, Swish, etc.)

Low cost

Low start-up cost equivalent to training
2-10 networks from scratch

Scalable

Scales to many hardware devices
at minimal cost

Reliable hardware
measurements

Uses direct hardware measurements instead
of a potentially inaccurate hardware model

Distilling Optimal Neural Networks: Rapid Search in Diverse Spaces (Moons, Bert, et al., arXiv 2020) 21



DONNA 4-step process Objective: Build accuracy model of search space once, then deploy to many scenarios

Bert Moons et al, “Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20

Define reference
A and search
space once

Define backbone:
* Fixed channels
 Head and Stem

oadfj

Varying parameters:
» Kernel Size

* Expansion Factors
* Network depth

* Network width

* Attention/activation

* Different efficient
layer types

22



Define reference architecture and search-space once

A diverse search space is essential for finding optimal architectures with higher accuracy

Select reference

architecture
The largest model
in the search-space

Chop the NN

into blocks

Fix the STEM, HEAD,
# blocks, strides,
# channels at block-edge

Choose search space
Diverse factorized
hierarchical search space,
including variable cell-types,
kernel-size, expansion-rate,
depth, # channels, activation,
attention

ch=64

ch=96

ch=128 ch=196 ch=256

sty Mg ey Wy e W el -,

Choose diverse search space

Conv DW Kernel: 3,5,7 Activation: RelLU/Swish Conv Avg FC
3x3s2 —* Conv Expand: 2,3,4,6 Celltype:  grouped, DW, ... 1x1 ]
ch=32 Depth: 1,2,3,4 Width scale: 0.5x, 1.0x ch=1536

Attention: SE, no SE

23



Define reference architecture and search-space once

Some example blocks in the shared search space: BasicBlocks, ShiftNets, MobileConv, Squeeze-and-Excitation

Choose search space

- EER G- -Ee) e -G -

Examples of variable

cell types that can
be combined in a

. A
single search space _” o s
? ' MLP
conv 1x1, Linear 4
= v T Norm
WelghEl ek Dwise 3x3, Relu6 @:
]."(X) J relu (a)Grouped Shift (b) Active Shift
" Multi-Head
weight layer T Al:u;ntigz
Flx) 4% Conv 1x1, Relué t =
Norm y
i / (¢ ) Sparse Shuft
ResNet-Style input Embedded
BasicBlock [1] Stride=1 block Patches
MobileNet-Style Vision-Transformer [3] ShiftNets [4]

Inverted Bottleneck [2]

24




Define reference architecture and search-space once

Some example blocks in the shared search space: BasicBlocks, ShiftNets, MobileConv, Squeeze-and-Excitation

Choose search space —RE - 1,52 | 2,522 | 3,522 }{ 4,s=1 }{ 5, s=2 - {RE0N

Two example
models, pareto-
optimal on a desktop
GPU

Model A, @73% ImageNet top-1

Model B, @79.5% ImageNet top-1

25

Distilling Optimal Neural Networks: Rapid Search in Diverse Spaces (Moons, Bert, et al., arXiv 2020)



DONNA 4-step process Objective: Build accuracy model of search space once, then deploy to many scenarios

Bert Moons et al, “Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20

Build accuracy model via
B Knowledge Distillation
(KD) once

_ Define reference
‘and search |
- space once

Approximate ideal projections
of a reference model through KD

Use quality of blockwise approximations
to build accuracy model

(<)
msE B VSE B MSE Bl MSE ll MSE ° 9%
1 2 3 4 5 : o

Define backbone:

Fixed channels
Head and Stem

oaBfj

Varying parameters:
Kernel Size

Expansion Factors
Network depth
Network width
Attention/activation

Different efficient
layer types

26



Build accuracy predictor via Blockwise Knowledge Distillation once

Low-cost hardware-agnostic training phase

Block library Architecture library Accuracy predictor
Pretrain all blocks in search- Quickly finetune a Fit linear
space through blockwise representative set regression
knowledge distillation of architectures model

Block

= - = 1

weights o
Finetuned o °

Block E architectures o o

quality >

metrics

Finetune sampled
networks

Linear Regression Model
Accurate predictions

Fast block training

Trivial parallelized training

Fast network training
Broad search space

Only 20-30 NN required

Up to 10x improved
ranking vs DARTS

27



Build accuracy predictor via BKD once

Low-cost hardware-agnostic training phase

State-of-the-art references achieve up to 0.65 KT ranking*

BossNAS, t=0.65

DARTS, t=0.08

MnasNet, T=0.61

DNA (MBNet), T = 0.23

Accuracy predictor

E 455 " ] Fit linear
Ea % ° ° o -0.325 regression
of an 8 45.0 o 6
> —‘.—___—__‘_—_-—-—" 445 @ d ® p
a e ® 3 s®
-3.530 o % -0.375 o
44.0 o o
o ® °o® °. ¢ > ™
-3.535 ‘: o - A -0.400
74 75 74 75 74 75 74 75
0 0
= 80 ° ©
578
DONNA achieves up to 0.91 KT on -
n [ <
basic test sets and reliably extends to 274 Linear Regression Model
test sets with previously unseencell- .., .~ AEEnTES Tt
9 est Set
. S ®  (MSE=0.20, KT=0.91) -
types' —O'SKT o DONNA ShiftNet Test Set Up tc_) 10x improved
& gty (MSE=0.20, KT=0.80) ranking vs DARTS
70 75 80
ImageNet Top-1 val. Accuracy [%]
DONNA = Bert Moons et al, “Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20 28

*Changlin Li, et al, “BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search, Arxiv 2021



DONNA 4-step process Objective: Build accuracy model of search space once, then deploy to many scenarios

Bert Moons et al, “Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20

" Definereference .  Build accuracy model via : -

é) and search B Knowledge Distillation C E;’;’lgﬂ‘%,’,‘%’}h
space once (KD) once

Define backbone: Approximate ideal projections | ’ i

of a reference model through KD

5

Fixed channels

Head and Stem
2 3
[TRTH]

Qualcomm
snapdragon

4

different compiler versions,
different image sizes
_>

Scenario-
> *E > specific
Varying parameters: search
Kernel Size >4
- : . - ®
Expansion Factors Use quality of blockwise approximations = - .
Network depth to build accuracy model o , 7,
@© .
Network width 5 Lo X
) .
Attention/activation o i3 Le *
Different efficient R 8 :
layer types o/ © o .
HW latency ;

29



Evolutionary search with real hardware measurements

Scenario-specific search allows users to select optimal architectures for real-life deployments

Predicted task accuracy

Task . ]
accuracy Quick turnaround time

predictor Results in +/- 1 day using one measurement device

NSGA-II
evolutionary

sampling End-to-end
algorithm model

5 . .
B o Accurate scenario-specific search

jiispergon Captures all intricacies of the hardware platform
and software — e.g. run-time version or devices
Target HW :

Measured latency on device

NSGA: Non-dominated Sorting Genetic Algorithm 30



DONNA 4-step process Objective: Build accuracy model of search space once, then deploy to many scenarios

Bert Moons et al, “Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20

Define reference Build accuracy model via ! . |
A | and search B z(no;lvledge Distillation C E;’g:gﬂ?ﬂazrzh D f?r?;m,l‘eeand
space once KD) once

Define backbone: Approximate ideal projections | ’
Fixed channels of a reference model through KD vsE B vse B vise B vise
Qualcomm 2 3 4 5
Head and Stem snapdragon
LI AL +
Use KD-initialized

different compiler versions,
different image sizes
blocks from step B
= a 1< H
Varying parameters:

Scenario- l to finetune any
Kernel Size

specific network in the
Expansion Factors Use quality of blockwise approximations

Sl search space in
Network depth to build accuracy model
1<)
oo
o o

o
L

15-50 epochs
_ - instead of 450
Network width
Attention/activation

Different efficient
layer types

Predicted accuracy




DONNA finds state-of-the-art
networks for on-device scenarios

Quickly optimize and make tradeoffs in model accuracy with respect
to the deployment conditions that matter
>20%

>20% >20%

faster at similar faster at similar faster at similar
accuracy - accuracy F accuracy
L3
+
5 >
] AD 1 ;f'f 1
275 I <4 ¥ ResNet-50 — 1 ' —*
6_74_ @ 79%, 25M 1 1g
(@) : ’ ’
= 73 - -
% 72 16 : 3 i sQn:Jp?ilggcz)lr\:VV\ Sgpadlggxm
%71- . 1 :
g 224x224 images 224x224 images 224x224 images 672x672 images
= 25 50 7.5 100 125 1000 2000 3000 4000 50 100 150 100 200 300 400
# of Parameters [M] FPS FPS FPS
Parameters Desktop GPU throughput Mobile SoC throughput! Mobile SoC throughput?
(Qualcomm® Adreno™ 660 GPU) (Hexagon 780 Processor)
—— Qurs (DONNA) Trend A mnasnet » EfficientNet BO/LiteO MobileNetV2 * ResNet & OFA/Scratch
® Ours (DONNA) actual « fbnet W MobileNetV3 v  ProxylLessNas 4+ DNA ¢ OFAx*/Scratch

Qualcomm Adreno 660 GPU in the Snapdragon 888 running on the Samsung Galaxy S21. 2: Qualcomm Hexagon 780 Processor in the Snapdragon 888 running on the Samsung Galaxy S21.
32

Qualcomm Adreno is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.



Fs.: From-Scratch-Equivalent training cost, 450 epochs

Search-cost / scenario Search-cost / scenario

DON NA Macro- 1 scenario, 10 % scenarios, 10

= Granularity diversity models/scenario [FS;] | models/ scenario [FS,]
efficiently

fl N d SO pt| ma | Layer-level Fixed

vere o --
. DNA Layer-level Fixed

diverse

scenarios NN

Cost of training
is a handful of
architectures®

2.7+10%[0.05-0.15] 0.5-1.5

90+10x%1

Block-level Variable

This Work Block-level Variable 9+10x0.1

M Good M OK M Notgood

DONNA == MnasNet-level diversity at 100x lower cost

OFA = Han Cai, et al, “Once For All: Train One Network and Specialize it for Efficient deployment’, ICLR2020

DNA = Changlin Li, “Blockwisely Supervised Neural Architecture Search with Knowledge Distillation’, CVPR20

MNasNet = MingXing Tan, et al, “MNasNet: Platform-Aware Neural Architecture Search for Mobile”, CVPR19
“Training 1 model from scratch = 450 epochs This work = Bert Moons et al, “Distilling Optimal Neural Networks. rapid search in diverse spaces, Arxiv20 33




Obiject Vision

DONNA applies

dire Ctly to Detection Transformers .

downstream Tel T 1 ) < e
S _ o] . 0?’;9“' el =‘

tasks and non- E 205 . g |Mobile models 5+ ';,.a- ol

CNN neural £ A )

architectures > AP/

Wlth O Ut § | ‘ : gFA (Scratch Init) E . ::: ::;

conceptual code X ows glr &

Changes 3254 01.':) 0.8 1.0 1.'2Eﬁi:.'ijnt1N.':t_Blc.')8 2.0 b t: “. ' ' 10000 12500 15000 17500

2500 5000 7500
# Normalized Latency wrt EfficientDet-DO # Multiply Accumulate Operations [FLOPS]




: The Model-
| Efficiency Pipeline

‘ Multiple axes to shrink
Al models and run them
NPT efficiently on hardware
architecture
search
N\
S < Pruning and 4

> Model -
Compression

.
\
]
!
o

Accurate
Quantization



Unstructured Pruning of Neural Networks

Pruning removes unnecessary connections in the neural network.
Unstructured pruning is non-trivial to accelerate on parallel hardware.

Pruning: less number of weights

Train Weights

____________ before pruning after pruning
- R
/ \
I ( R |
! | Train Connectivity : pruning
I\ ngs > | synapses
|
: 4 ) I
! | Prune Connections :
e ' pruning
: 2 : neurons
1 ™ I
| |
! |
\ |

Song Han, et al, “Deep compression. compressing deep Neural Networks with Pruning, Trained Quantization and Huffman Coding *, NIPS2015



Structured compression through low rank approximations

Structured mathematical decompositions (SVD, CP, Tucker-ll, Tensor-
train,...) are easier to accelerate on parallel hardware

convk xk
convlixl convlixl

kxk
convlixl [ ]
- NN EED A J ED A

(a) Weight SVD (d) Tucker decomposition

conv

conv conv1xk

convlxk convlix1

kx1 convkx1l
. D L D
..]_na

(b) Spatial SVD

convlixl

(e) Tensor-train decomposition

conv1xk

convlxl depth-wise separable conv 1xk

depth-wise separable convixl

(c¢) CP-decomposition

Andrey Kuzmin, et al, “Taxonomy and Evaluation of Structured Compression of Convolutional Neural Networks”, Arxiv 2019



Structured compression through low rank approximations

. Imagenet (Resnet50)
- (Structured) Channel Pruning .
and Spatial-SVD typically 76 - x
work best. 2 |
* 50% compression @0.3% _7-
accuracy loss for ResNet-50 =
@ 70 -
f 68 -
= - uncompressed model
66 : .
s Spatial SVD fine-tuned
—»— Weight SVD fine-tuned
64 - —»— Tucker decomposition fine-tuned
-~ Tensor-train decomposition fine-tuned
62 A —— Channel pruning fine-tuned
1.r0 1.'5 2?0 2.'5 3.r0 3.'5 4?0 4?5
GMACs

Andrey Kuzmin, et al, “Taxonomy and Evaluation of Structured Compression of Convolutional Neural Networks’, Arxiv 2019 38
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Multiple axes to shrink
Al models and run them

Neural efficiently on hardware

architecture
search

Quantization

\
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N Pruning and
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What is neural network quantization?

For any given trained neural network: Benefits
« Store weights in n bits * Reduced memory usage
- Compute calculations in n bits * Reduced energy usage

* Lower latency

Quantization example

24 bits per pixel

40



Data-free AdaRound

quantization
Baseline training-free Outperform rounding
method with equalization to nearest

and bias correction

No training No training
Data free Minimal unlabeled data

Pushing the
limits of what's
possible with

qua ntization SOTA 8-bit results SOTA 4-bit weight results

Accuracy drop for Accuracy drop for
MobileNet V2 MobileNet V2
against FP32 model against FP32 model

Data-Free Quantization Through Weight Equalization and Up or Down? Adaptive Rounding for Post-Training
Bias Correction (Nagel, van Baalen, et al., ICCV 2019) Quantization (Nagel, Amjad, et al., ICML 2020)

SOTA: State-of-the-art

Bayesian bits

Automated mixed-precision

Training required
Training data required

Jointly learns bit-width
precision and pruning

<1%



Ada rou nd Up or Down? Adaptive Rounding for Post-Training Quantization (Nagel, Amjad, et al., ICML 2020)

* Traditional post-training weight quantization uses rounding to nearest:

* However, rounding-to-nearest is not optimal

o % B

Nearest 52.29 < 55 ° ?.’

Floor / Ceil 00.10 RS A 1

Stochastic 52.06+5.52 g y R |

Stochastic (best) 63.06 40 e, o
4-bit weight quantization of 15t layer of Resnet18 o Lo s - ;5 -

,tested on ImageNet.

42



Up or Down?
How can we systematically find the best rounding choice?



AdaRound: learning to round

Regularizer forces V to be 0 or 1

—~ 2
+ Minimize per-layer argmin |[Wx —Wx| 4+ f;c (V) m
L2 loss of output | — 52
— W ~ — p=4
>0 > Soft c(1)t.14antizatio(r)1.€ls7('v,-,,-) o 0

round down + |earned value between [0,1]

- Regularization:  freg (V Z 1= |2k (Vi;) — 1)

Optimized h(V; ;)

0.0 0.2 0.4 0.6 0.8 1.0
Initial h(V;;)

44



Comparison to literature

Setting a new SOTA for 4-bit post-training weight quantization

Optimization #bits W/A Resnet18 Resnet50 InceptionV3  MobilenetV?2
Full precision 32/32 69.68 76.07 77.40 71.72
DFQ (Nagel et al., 2019) 8/8 69.7 - - 71.2
DFQ (our impl.) 4/8 38.98 52.84 - 46.57
Bias corr (Banner et al., 2019) 4*/8 67.4 74.8 59.5 -
AdaRound w/ act quant 4/8 68.55+0.01 75.01+0.05 75.72+0.09 69.25+0.06'

Table 7. Comparison among different post-training quantization strategies in the literature. We report results for various models in terms
of ImageNet validation accuracy (%). *Uses per channel quantization. TUsing CLE (Nagel et al., 2019) as preprocessing.
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Tools are open-sourced
through AIMET

github.com/quic/aimet

github.com/quic/aimet-model-zoo

AIMET Model Zoo is a product of Qualcomm Innovation Center, Inc.




AIMET

State-of-the-art quantization and compression techniques

AIMET Model Zoo

Accurate pre-trained 8-bit quantized models

: .
8 Gukommrocen e

Al Model Efficiency Toolkit (AIMET)

AVLT @ 8 Werary thar orowden advanced D Bred reass retecnt Todeh K

[ vty sl es Dl v Ly g s g e . e T RIS P S

Compute and memory requnements and merimal arpect 13 tank SC0UBCY

o®
L]
e A Mindet Ecorniry Toudt
- W e T) B e
- - - ., ' e . . .
.« * e 13— g
L s
y P—
AVET o devgred 4o work sy Py * ond Teran b ea vty
Table of Contents

github.com/quic/aimet

README.md

ﬁ’% Qualcomm Innovation Center

Model Zoo for Al Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized
performance. Results demonstrate that quantized models can provide good accuracy, comparable to floating point
models. Together with results, we also provide recipes for users to quantize floating-point models using the Al Model
Efficiency ToolKit (AIMET).

Table of Contents

o Introduction

o Tensorflow Models
© Model Zoo
o Detailed Results

® PyTorch Models
o Model Zoo

o Detailed Results
® Examples
e Team

o License

Introduction

Quantized inference is significantly faster than floating-point inference, and enables models to run in a power-efficient
manner on mobile and edge devices. We use AIMET, a library that includes state-of-the-art techniques for
quantization, to quantize various models available in TensorFlow and PyTorch frameworks. The list of models is
provided in the sections below.

github.com/quic/aimet-model-zoo

Join our open-source projects




AIMET Model Zoo includes popular quantized Al models

Accuracy is maintained for INT8 models — less than 1% loss*

<1%

Loss in
accuracy”

Tensorflow

75.21% 74.96% 75% 74.21% W 74.93% 74.99% @ 0.2469 0.2456
FP32 INT8 FP32  INT8 FP32 INTS8 FP32 INT8
Top-1 accuracy® Top-1 accuracy® Top-1 accuracy® mAP*
ResNet-50 MobileNet- EfficientNet SSD
(v1) v2-1.4 Lite MobileNet-v2
0.383 0.379 25.45 2478
FP32 INT8 FP32 INT8
mAP* PSNR*
RetinaNet Pose SRGAN
estimation

*: Comparison between FP32 model and INT8 model quantized with AIMET.
For further details, check out: https://github.com/quic/aimet-model-zoo/

Pytorch

7167% 71.14% W 75.42% 74.44% Q@ 72.62% 72.22% @ 68.7% 68.6%
FP32 INT8 FP32  INTS8 FP32 INTS8 FP32 INT8
Top-1 accuracy® Top-1 accuracy® mloU* mAP*
MobileNetV2 EfficientNet- DeepLabV3+ MobileNetV2-
liteO SSD-Lite
2551 255 9.92% 10.22%
FP32 INT8 FP32 INT8
PSNR WER*
Pose SRGAN DeepSpeech2
estimation
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What's next in efficient
on-device Al




Ultimately limited gains from NAS, compression, uniform quantization

Current tools optimize existing architectures, leading to 1-3x gains over standard networks on device

Imagenet (Resnet50)
3x 2] 2X 8-bit Integer
Faster than 1 Less MAC'’s
ResNet50 i than ResNet50
—_ 72 1
5
g 70 A
2 68 .
= 66 - - uncompressed model 4-b|t Integer
—» Spatial SVD fine-tuned
—»— Weight SVD fine-tuned
64 1 —— Tucker decomposition fine-tuned
ggp%!g;’:m —»— Tensor-train decomposition fine-tuned
o 62 —— Channel pruning fine-tuned
g ! 224X224|- Images ! 1.I0 1.'5 2:0 2;5 3.l0 3.'5 4.|0 4.I5
- 50 100 150 GMACs
FPS
Mobile SoC throughput!
(Adreno 660 GPU)

NAS Compression 4-8b established

1 Qualcomm Adreno 660 GPU in the Snapdragon 888 running on the Samsung Galaxy S21

[2]JAndrey Kuzmin, et al, “Taxonomy and Evaluation of Structured Compression of Convolutional Neural Networks”, Arxiv 2019 .



What's next in efficient Al models?

8bit Baseline HW-Aware 8bit NAS,
Pareto Front Compressed Pareto Front

Task Quality

What's next?
>

Baseline Models

Throughput



Mixed-Precision
Quantized NAS



Mixed Precision outperforms uniform quantization

Bayesian Bits: Neural Networks can be optimized for mixed-precision.
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pruned (green)

Mart Van Baalen, et ak ‘Bayesian Bits: Unifying Quantization and Pruning”, Neurjps 2020 54



Many Ways to gain from mixed-precision

An academic system level example

2D-SIMD MAC-array

1.45 mm

* DVAFS: DVAS + subword parallelism op/J 10x @ 2b vs 8b
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Bert Moons, et al, “Envision. a 0.26-to-10 TOPS/W Subword-Parallel Dynamic-Voliage-Accuracy-Frequency-Scalable Convolutional Neural Network Processor in 28nm FDSOV”, ISSCC2017
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Mixed Precision Quantized NAS

* APQ builds on top of OFA 75.1 +0.5% Acc with 2.2x BitOps savmg i
* +/- 1%, or 2.2x BOPS gains 74 -
expected through joint NAS < L
and Quantization =
O 27
<
& —+— Ours
A =1 —+— Single Path One-Shot
ResNet-34
—+— DNAS
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BitOps (G)

Tianzhe Wang, et al, “APQ): Joint Search for Network Architecture, Pruning and Quantization Policy”, CVPR2020
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What’s next in efficient Al models?

Sbit Baseline 8bit NAS, <8bit mixed-
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Conditional networks



Conditional computing as a complementary technique to NAS

Input-dependent network architectures spend less time on easier samples

Classification: some samples are easier than others

Copyright Pixel Addict and Doyle (CC BY-ND 2.0), no changes made
found through Huang, G, et al, "Multi-Scale Dense Networks for Resource Efficient Image Classification’, ICLR2018
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Conditional computing as a complementary technique to NAS

Input-dependent network architectures spend less time on easier samples

Early exiting, some samples are easier than others

Anytime prediction on ImageNet
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Huang, G, et al, "Multi-Scale Dense Networks for Resource Efficient Image Classification’, ICLR2018
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Conditional computing as a complementary technique to NAS

Input-dependent network architectures spend less time on easier samples

Segmentation: backgrounds are Detection: Objects of interest are
abundant and easy to recognize relatively rare

Sante Road /a
~ | Mast Beulevard 4% || :
| Missieon Gerqe Rd & TRl
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Conditional computing as a complementary technique to NAS

Input-dependent network architectures spend less time on easier samples

Dynamic Convolutions: exploiting spatial sparsity
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Thomas Verelst, et al, “Dynamic Convolutions: Exploiting 70 3 4 5 6 7

spatial sparsity for faster inference’, CVPR20 MACs 1e9
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Conditional computing as a complementary technique to NAS

Input-dependent network architectures spend less time on easier samples

Video: Subsequent frames are correlated

Artur Andrzej, https.//commons.wikimedia.orq/wikl/File:Gdarisk skrzyZowanie ulic Grunwaldzkiej | Stowackiego./pg

(Creative Commons CCO 1.0 Universal Public Domain Dedication), no changes made
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Conditional computing as a complementary technique to NAS

Input-dependent network architectures spend less time on easier samples

Temporal Skip-Convolutions in video segmentation/detection
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Amirhossein Habibian, et al, ‘Skip-Convolutions for Efficient Video Processing”, CVPRZ21
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Conditional computing as a complementary technique to NAS

Input-dependent network architectures spend less time on easier samples

Conditional Early exiting in video/action recognition
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Figure 1: Efficient video recognition by early exiting. Figure 6: Accuracy vs. efficiency curves on ActivityNet.

Amir Ghodrati, et al, “FrameExit: Conditional Early Exiting for efficient Video Recognition’, CVPR21
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What's next in efficient Al models?

8bit Baseline 8bit : <8bit mixed-
Pareto Front Compressed precision NAS

Task Qualtiry or Accuracy

Condltional computing

Throughput
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What's next in efficient Al models?

8Sbit Baseline Diverse <8bit Mixed-Precision
Pareto Front NAS + Conditional computing

Task Qualtiry or Accuracy

Throughput
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Qualcomnm

Overview

Energy-Efficient machine learning and the
computational budget gap

The Model-Efficiency Pipeline reduces the cost of
on-device inference

B NAS @ Compression Il Quantization >

Qualcomm Innovation Center, Inc. open sources
through Al Model Efficiency Toolkit (AIMET)

What's next in energy-efficient Al
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