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Advancing research to make AI ubiquitous

AutomotiveIoT Mobile Cloud

We are creating platform innovations to scale AI across the industry

Power efficiency Efficient learningPersonalization

Action
Reinforcement learning 
for decision making

Perception
Object detection, speech 
recognition, contextual fusion

Reasoning
Scene understanding, language 
understanding, behavior prediction
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• Energy-Efficient machine learning and the 
computational budget gap

• The Model-Efficiency Pipeline reduces the cost of 
on-device inference

Qualcomm Innovation Center, Inc. open sources 
through AI Model Efficiency Toolkit (AIMET)

•What’s next in energy-efficient AI

Agenda

NAS Compression Quantization
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Video monitoringExtended reality Smart citiesSmart factories

Autonomous vehiclesVideo conferencingSmart homesSmartphone

AI is being used all around us 
increasing productivity, enhancing collaboration, 
and transforming industries

AI video analysis is on the rise
Trend toward more cameras, higher resolution,
and increased frame rate across devices
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Increasingly large and complex neural networks for Natural Language 
Processing, Image and Video Processing2025
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1940 1950 1960 1970 1980 1990 2000 2010 2020 2030

1943: First NN (+/- N=10)

1988: 
NetTalk
(+/- N=20K)

2009: Hinton’s Deep 
Belief Net (+/- N=10M)

2013: Google/Y! 
(N=+/- 1B)

2025: 
N = 100T = 1014

2017: Very large neural 
networks (N = 137B)

1012

1010

108

106

1014

104

102

100

Deep neural networks
are energy hungry
and growing fast
AI is being powered by the explosive
growth of deep neural networks

2021: Extremely 
large neural 
networks (N = 1.6T)
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Power and thermal
efficiency are essential

for on-device AI

The challenge of
AI workloads

Constrained mobile
environment

Very compute
intensive

Large,
complicated neural

network models

Complex
concurrencies

Always-on 

Real-time

Must be thermally
efficient for sleek,
ultra-light designs

Storage/memory 
bandwidth limitations

Requires long battery 
life for all-day use
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Trend 1:
Increasingly complex
Neural Networks: 
Image, NLP, video, 
ensembles, higher 
resolution, …

The Deep Learning Budget Gap
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Neural Network Applications
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Trend 1:
Increasingly complex
Neural Networks: 
Image, NLP, video, 
ensembles, higher 
resolution, …

Trend 2:
Faster, more efficient 
hardware platforms 
close the Budget Gap

The Deep Learning Budget Gap

2018 2020 2022

Mobile AIP in 1W range

248 FPS1*

902 FPS2*

Budget Gap

1: Qualcomm® Hexagon™ 698 DSP in the Qualcomm® Snapdragon™ 865 running on the ASUS ROG Phone 3
2: Qualcomm® Hexagon™ 780 DSP in the Qualcomm® Snapdragon™ 780 running on the Oneplus 9 Pro
Qualcomm Hexagon and Qualcomm Snapdragon are products of Qualcomm Technologies, Inc. and/or its subsidiaries.
*: MobileNetEdge on mlperf https://mlcommons.org/en/inference-mobile-10/

Neural Network Applications
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The Deep Learning Budget Gap

2016 2018 2020 2022

Tiny AIP in 10mW range

Budget Gap

Neural Network Applications
Trend 1:
Increasingly complex
Neural Networks: 
Image, NLP, video, 
ensembles, higher 
resolution, …

Trend 2:
Faster, more efficient 
hardware platforms 
close the Budget Gap
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Trend 1:
Increasingly complex
Neural Networks: 
Image, NLP, video, 
ensembles, higher 
resolution, …

Trend 2:
Faster, more efficient 
hardware platforms 
close the Budget Gap

Trend 3:
Faster, optimized 
Neural Networks and 
Applications close the 
Budget Gap

The Deep Learning Budget Gap

2018 2020 2022

Mobile AIP in 1W range 248 FPS1*

902 FPS2*

Neural Network Applications
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Efficient Neural Networks

1: Qualcomm® Hexagon™ 698 DSP in the Qualcomm® Snapdragon™ 865 running on the ASUS ROG Phone 3
2: Qualcomm® Hexagon™ 780 DSP in the Qualcomm® Snapdragon™ 780 running on the Oneplus 9 Pro
Qualcomm Hexagon and Qualcomm Snapdragon are products of Qualcomm Technologies, Inc. and/or its subsidiaries.
*: MobileNetEdge on mlperf https://mlcommons.org/en/inference-mobile-10/
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Trend 3: The Model-
Efficiency Pipeline
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The Model-
Efficiency Pipeline

Multiple axes to shrink
AI models and run them
efficiently on hardware

Pruning and 
Model 

Compression

Accurate
Quantization

Neural 
architecture 

search
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Training networks 
from scratch is 
expensive!

Neural Architecture Search: automated design of on-device optimal networks

>2 GPU months to train a single SotA network on ImageNet
~4k USD per network using commercial cloud services
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Training networks 
from scratch is 
expensive!

Neural Architecture Search: automated design of on-device optimal networks

>2 GPU months to train a single SotA network on ImageNet
~4k USD per network using commercial cloud services

Manual network 
design requires 
training many 
networks from scratch
for every device

Expert 
Design Train

Evaluate

Expert 
Design Train

Evaluate

Expert 
Design Train

Evaluate

…

Spec A, Platform A Spec B, Platform B Spec C, Platform C
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Training networks 
from scratch is 
expensive!

Neural Architecture Search: automated design of on-device optimal networks

>2 GPU months to train a single SotA network on ImageNet
~4k USD per network using commercial cloud services

Manual network 
design requires 
training many 
networks from scratch
for every device

Solution

Expert 
Design Train

Evaluate

Expert 
Design Train

Evaluate

Expert 
Design Train

Evaluate

…

Cheap, scalable Neural Architecture Search reduces design 
and training costs of networks optimized for specific devices

Spec A, Platform A Spec B, Platform B Spec C, Platform C
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Existing NAS 
solutions do not 
address all the 
challenges

High cost
Brute force search is expensive 
>40,000 epochs per platform 

Lack diverse search
Hard to search in diverse spaces, with different
block-types, attention, and activations
Repeated training for every new scenario

Do not scale
Repeated training for every device
>40,000 epochs per platform

Unreliable hardware models
Requires differentiable cost-functions
Repeated training phase for every new device
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Introducing new AI research

Efficient NAS with hardware-aware 
optimization 

Finds pareto-optimal architectures 
in terms of accuracy-latency at low 
cost

Distilling Optimal Neural 
Network Architectures

DONNA

Distilling Optimal Neural Networks: Rapid Search in Diverse Spaces (Moons, Bert, et al., arXiv 2020)

Low cost
Low start-up cost equivalent to training 
2-10 networks from scratch

Scalable
Scales to many hardware devices
at minimal cost 

Reliable hardware
measurements
Uses direct hardware measurements instead
of a potentially inaccurate hardware model

Diverse search to find
the best models
Supports diverse spaces with different cell-
types, attention, and activation functions 
(ReLU, Swish, etc.)
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Varying parameters:

• Kernel Size

• Expansion Factors 

• Network depth

• Network width

• Attention/activation

• Different efficient 
layer types

DONNA 4-step process Objective: Build accuracy model of search space once, then deploy to many scenarios

Define reference
and search
space once

A

22

Define backbone:

• Fixed channels

• Head and Stem

1 2 3 4 5

Bert Moons et al, “”Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20
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Define reference architecture and search-space once
A diverse search space is essential for finding optimal architectures with higher accuracy

Select reference 
architecture
The largest model
in the search-space

Chop the NN
into blocks
Fix the STEM, HEAD,
# blocks, strides,
# channels at block-edge

Choose search space
Diverse factorized 
hierarchical search space, 
including variable cell-types, 
kernel-size, expansion-rate, 
depth, # channels, activation, 
attention

STEM 1, s=2 2, s=2 3, s=2 4, s=1 5, s=2 HEAD
ch=32 ch=64 ch=96 ch=128 ch=196 ch=256

Conv
1x1

FCAvg

ch=1536

Conv
3x3s2

DW
Conv

ch=32

Kernel:
Expand:
Depth:
Attention:

3,5,7
2,3,4,6
1,2,3,4
SE, no SE

Activation:
Cell type:
Width scale:

ReLU/Swish
grouped, DW, …
0.5x, 1.0x

Choose diverse search space

Ch: channel; SE: Squeeze-and-Excitation
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Define reference architecture and search-space once
Some example blocks in the shared search space: BasicBlocks, ShiftNets, MobileConv, Squeeze-and-Excitation

Choose search space

Examples of variable 
cell types that can
be combined in a 
single search space

STEM 1, s=2 2, s=2 3, s=2 4, s=1 5, s=2 HEAD

Ch: channel; SE: Squeeze-and-Excitation

ResNet-Style
BasicBlock [1]

MobileNet-Style 
Inverted Bottleneck [2]

ShiftNets [4]Vision-Transformer [3]

[1] K. He, “Deep Residual Learning
for image recognition”, CVPR16

[2] M. Sandler, “MobileNEtV2: Inverted 
Residuals and Linear Bottlenecks”, 
CVPR18”

[3] A. Dosovitskiy, “An image is Worth 
16x16 words: transformers for image
recognition at scale”, ICLR21

[4] W. Chen, “All you need is a few 
shifts: Designing efficient convolutional 
neural networks for image 
classification”, CVPR19
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Define reference architecture and search-space once
Some example blocks in the shared search space: BasicBlocks, ShiftNets, MobileConv, Squeeze-and-Excitation

Choose search space

Two example
models, pareto-
optimal on a desktop 
GPU

STEM 1, s=2 2, s=2 3, s=2 4, s=1 5, s=2 HEAD

Model A, @73% ImageNet top-1

Model B, @79.5% ImageNet top-1

Distilling Optimal Neural Networks: Rapid Search in Diverse Spaces (Moons, Bert, et al., arXiv 2020)
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Varying parameters:
• Kernel Size

• Expansion Factors 

• Network depth

• Network width

• Attention/activation

• Different efficient 
layer types

Approximate ideal projections
of a reference model through KD

1

1

MSE

2

2

MSE

3

3

MSE

4

4

MSE

5

5

MSE

Use quality of blockwise approximations
to build accuracy model

MSE
4

MSE
1

MSE
5

MSE
2

MSE
3

Define backbone:
• Fixed channels

• Head and Stem

1 2 3 4 5

DONNA 4-step process Objective: Build accuracy model of search space once, then deploy to many scenarios

26

Build accuracy model via
Knowledge Distillation
(KD) once

B
Define reference
and search
space once

A

Bert Moons et al, “”Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20
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Build accuracy predictor via Blockwise Knowledge Distillation once
Low-cost hardware-agnostic training phase

Block library

Pretrain all blocks in search-
space through blockwise
knowledge distillation

Fast block training

Trivial parallelized training

Broad search space 

Block
pretrained
weights

Block
quality
metrics

Finetuned 
architectures

Architecture library

Quickly finetune a 
representative set
of architectures

Finetune sampled 
networks

Fast network training

Only 20-30 NN required

Accuracy predictor

Fit linear
regression
model

Linear Regression Model

Accurate predictions

Up to 10x improved 
ranking vs DARTS
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Build accuracy predictor via BKD once
Low-cost hardware-agnostic training phase

Accuracy predictor

Fit linear
regression
model

Linear Regression Model

Accurate predictions

Up to 10x improved 
ranking vs DARTS

DONNA = Bert Moons et al, “”Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20
* Changlin Li, et al, “BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search, Arxiv 2021 

DONNA achieves up to 0.91 KT on
basic test sets and reliably extends to  
test sets with previously unseen cell-
types: 0.8KT

State-of-the-art references achieve up to 0.65 KT ranking*
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Varying parameters:
• Kernel Size

• Expansion Factors 

• Network depth

• Network width

• Attention/activation

• Different efficient 
layer types

Define backbone:
• Fixed channels

• Head and Stem

1 2 3 4 5

A

Approximate ideal projections
of a reference model through KD

1

MSE

2

MSE

3

MSE

4

MSE

5

MSE

Use quality of blockwise approximations
to build accuracy model

MSE
4

MSE
1

MSE
5

MSE
2

MSE
3

different compiler versions, 
different image sizes

HW latency

P
re

di
ct

ed
 a

cc
ur

ac
y

Scenario-
specific 
search

DONNA 4-step process Objective: Build accuracy model of search space once, then deploy to many scenarios

29

Build accuracy model via
Knowledge Distillation
(KD) once

B Evolutionary 
search in 24hC

Define reference
and search
space once

1 2 3 4 5

Bert Moons et al, “”Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20
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Evolutionary search with real hardware measurements
Scenario-specific search allows users to select optimal architectures for real-life deployments

Quick turnaround time
Results in +/- 1 day using one measurement device

NSGA: Non-dominated Sorting Genetic Algorithm

Accurate scenario-specific search
Captures all intricacies of the hardware platform
and software — e.g. run-time version or devices

NSGA-II

evolutionary
sampling
algorithm

Target HW

Task 
accuracy 
predictor

Predicted task accuracy

Measured latency on device 

End-to-end 
model
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different compiler versions, 
different image sizes

HW latency

P
re

di
ct

ed
 a

cc
ur

ac
y

Scenario-
specific 
search

MSE
4

MSE
1

MSE
5

MSE
2

MSE
3

41 52 3

Use KD-initialized 
blocks from step B
to finetune any
network in the
search space in
15-50 epochs
instead of 450

DONNA 4-step process Objective: Build accuracy model of search space once, then deploy to many scenarios

31

Evolutionary 
search in 24h C Sample and

finetuneD

Varying parameters:
• Kernel Size

• Expansion Factors 

• Network depth

• Network width

• Attention/activation

• Different efficient 
layer types

Define backbone:
• Fixed channels

• Head and Stem

1 2 3 4 5

A

Approximate ideal projections
of a reference model through KD

1

MSE

2

MSE

3

MSE

4

MSE

5

MSE

Use quality of blockwise approximations
to build accuracy model

MSE
4

MSE
1

MSE
5

MSE
2

MSE
3

Build accuracy model via
Knowledge Distillation
(KD) once

B
Define reference
and search
space once

1 2 3 4 5

Bert Moons et al, “”Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20
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Qualcomm Adreno 660 GPU in the Snapdragon 888 running on the Samsung Galaxy S21. 2: Qualcomm Hexagon 780 Processor in the Snapdragon 888 running on the Samsung Galaxy S21.

Qualcomm Adreno is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.

DONNA finds state-of-the-art
networks for on-device scenarios
Quickly optimize and make tradeoffs in model accuracy with respect 
to the deployment conditions that matter

# of Parameters [M]

Parameters

FPS

Desktop GPU throughput

FPS

Mobile SoC throughput1
(Qualcomm® Adreno™ 660 GPU)

FPS

Mobile SoC throughput2
(Hexagon 780 Processor)

>20%
faster at similar 

accuracy

>20%
faster at similar 

accuracy

224x224 images 224x224 images224x224 images 672x672 images

>20%
faster at similar 

accuracy
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DONNA == MnasNet-level diversity at 100x lower cost

*Training 1 model from scratch = 450 epochs

DONNA 
efficiently
finds optimal
models over
diverse 
scenarios
Cost of training
is a handful of
architectures*

Method Granularity
Macro-

diversity

Search-cost / scenario
1 scenario, 10 

models/scenario [FSe]

Search-cost / scenario
∞ scenarios, 10 

models/ scenario [FSe]

OFA Layer-level Fixed 2.7+10×[0.05-0.15] 0.5 – 1.5

DNA Layer-level Fixed 1.5+10×1 10

MNasNet Block-level Variable 90+10×1 100

This Work Block-level Variable 9+10×0.1 1

Good OK Not good

OFA = Han Cai, et al, “Once For All: Train One Network and Specialize it for Efficient deployment”, ICLR2020
DNA = Changlin Li, “Blockwisely Supervised Neural Architecture Search with Knowledge Distillation”, CVPR20
MNasNet = MingXing Tan, et al, “MNasNet: Platform-Aware Neural Architecture Search for Mobile”, CVPR19
This work = Bert Moons et al, “”Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20

Fse: From-Scratch-Equivalent training cost, 450 epochs
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DONNA applies 
directly to 
downstream
tasks and non-
CNN neural 
architectures
without 
conceptual code 
changes 

# Multiply Accumulate Operations [FLOPS]

ResNet-50

DEIT

VIT

Mobile models

P
re

di
ct

ed
 to

p
-1

 a
cc

ur
ac

y

VIT-B

DEIT-B

Object
Detection

Vision
Transformers

C
O

C
O

 V
A

L 
m

A
P

(%
)
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The Model-
Efficiency Pipeline

Multiple axes to shrink
AI models and run them
efficiently on hardware

Pruning and 
Model 

Compression

Accurate
Quantization

Neural 
architecture 

search
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Unstructured Pruning of Neural Networks 

Pruning removes unnecessary connections in the neural network. 
Unstructured pruning is non-trivial to accelerate on parallel hardware.

Song Han, et al, “Deep compression: compressing deep Neural Networks with Pruning, Trained Quantization and Huffman Coding ”, NIPS2015
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Structured compression through low rank approximations

Structured mathematical decompositions (SVD, CP, Tucker-II, Tensor-
train,…) are easier to accelerate on parallel hardware

Andrey Kuzmin, et al, “Taxonomy and Evaluation of Structured Compression of Convolutional Neural Networks”, Arxiv 2019
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Structured compression through low rank approximations
• (Structured) Channel Pruning 

and Spatial-SVD typically 
work best.

• 50% compression @0.3% 
accuracy loss for ResNet-50

Andrey Kuzmin, et al, “Taxonomy and Evaluation of Structured Compression of Convolutional Neural Networks”, Arxiv 2019
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The Model-
Efficiency Pipeline

Multiple axes to shrink
AI models and run them
efficiently on hardware

Pruning and 
Model 

Compression

Accurate
Quantization

Neural 
architecture 

search
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What is neural network quantization?

For any given trained neural network:

• Store weights in n bits

• Compute calculations in n bits

Quantization example

Benefits

• Reduced memory usage

• Reduced energy usage

• Lower latency
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Data-free 
quantization

No training

Data free

Pushing the 
limits of what’s 
possible with 
quantization

AdaRound

No training

Minimal unlabeled data

Outperform rounding 
to nearest

SOTA 8-bit results

<1%
Accuracy drop for
MobileNet V2
against FP32 model

Data-Free Quantization Through Weight Equalization and
Bias Correction (Nagel, van Baalen, et al., ICCV 2019)

SOTA: State-of-the-art

<2.5%
Accuracy drop for
MobileNet V2
against FP32 model

Up or Down? Adaptive Rounding for Post-Training 
Quantization (Nagel, Amjad, et al., ICML 2020)

Bayesian bits

Training required

Training data required

Jointly learns bit-width 
precision and pruning

Automated mixed-precision

SOTA mixed-precision results

<1%

Accuracy drop for
MobileNet V2 against
FP32 model for mixed
precision model with 
computational
complexity equivalent
to a 4-bit weight 
model

Bayesian Bits: Unifying Quantization and Pruning 
van Baalen, Louizos, et al., NeurIPS 2020)

4141

SOTA 4-bit weight results

Baseline training-free 
method with equalization 
and bias correction
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Adaround

• Traditional post-training weight quantization uses rounding to nearest:

• However, rounding-to-nearest is not optimal

Rounding Method Accuracy (%)

Nearest 52.29

Floor / Ceil 00.10

Stochastic 52.06±5.52

Stochastic (best) 63.06

4-bit weight quantization of 1st layer of Resnet18 
,tested on ImageNet.

Up or Down? Adaptive Rounding for Post-Training Quantization (Nagel, Amjad, et al., ICML 2020)
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Up or Down?
How can we systematically find the best rounding choice?
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AdaRound: learning to round 

• Minimize per-layer
L2 loss of output
features

• Regularization:

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Adaptive Rounding for Post-Training Quantization

same fully connected layer we have

@2L
@W(`)

i,j @W
(`)
m,o

=
@

@W(`)
m,o

"
@L
@z(`)i

· x(`�1)
j

#
(14)

=
@2L

@z(`)i @z(`)m

· x(`�1)
j x

(`�1)
o , (15)

where z
(`) = W

(`)
x
(`�1) are the preactivations for layer

` and x
(`�1) denotes the input to layer `. Writing this in

matrix formulation (for flattened w
(`)), we have (Botev

et al., 2017)

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦r2

z(`)L
i
, (16)

where ⌦ denotes Kronecker product of two matrices and
r2

z(`)L is the Hessian of the task loss w.r.t. z(`). It is clear
from (16) that the complexity issues are mainly caused by
r2

z(`)L that requires backpropagation of second derivatives
through the subsequent layers of the network. To tackle this,
we make the assumption that r2

z(`)L is a diagonal matrix,
denoted by diag

�
r2

z(`)Li,i

�
. This leads to

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦ diag(r2

z(`)Li,i)
i
. (17)

Plugging (17) into our equation for finding the rounding
vector that optimizes the loss (13), we obtain

argmin
�W

(`)
k,:

E
h
r2

z(`)Lk,k ·�W(`)
k,:x

(`�1)x(`�1),T�W(`)
k,:

,T
i

(18)
(a)
= argmin
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k,: E

h
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= argmin
�W

(`)
k,:

E
⇣

�W(`)
k,:x

(`�1)
⌘2

�
, (20)

where the optimization problem in (13) now decomposes
into independent sub-problems in (18). Each sub-problem
deals with a single row �W

(`)
k,: and (a) is the outcome of

making a further assumption that r2
z(`)Li,i = ci is a con-

stant independent of the input data samples. It is worthwhile
to note that optimizing (20) requires no knowledge of the
subsequent layers and the task loss. In (20), we are simply
minimizing the Mean Squared Error (MSE) introduced in
the preactivations z(`) due to quantization. It is interesting
to note that this is the same layer-wise objective as is opti-
mized in several neural network compression papers such
as Zhang et al. (2016); He et al. (2017). Here we arrive
at this objective in a principled way and conclude that op-
timizing the MSE, as specified in (20), is the best we can
do when assuming no knowledge of the rest of the network
past the layer that we are optimizing. The same holds for
e.g., setting per-layer activation ranges as in (Choukroun

et al., 2019). In the supplementary material we perform an
analogous analysis for convolutional layers.

The optimization problem in (20) can be tackled by either
precomputing E

⇥
x
(`�1)

x
(`�1),T

⇤
, as done in (19), and then

performing the optimization over �W
(`)
k,: , or by performing

a single layer forward pass for each potential �W
(`)
k,: during

the optimization procedure.

In section 5, we empirically verify that the constant diagonal
approximation of r2

z(`)L does not negatively influence the
performance.

3.3. AdaRound

Solving (20) does not suffer from complexity issues associ-
ated with H

(w(`)). However, it is still an NP-hard discrete
optimization problem. Finding good (sub-optimal) solu-
tion with reasonable computational complexity can be a
challenge for larger number of optimization variables. To
tackle this we relax (20) to the following continuous opti-
mization problem based on soft quantization variables (the
superscripts are the same as (20))

argmin
V

���Wx� fWx

���
2

F
+ �freg (V) , (21)

where k·k2F denotes the Frobenius norm and fW are the
soft-quantized weights that we optimize over

fW = s · clip
✓�

W

s

⌫
+ h (V) , n, p

◆
. (22)

In the case of a convolutional layer the Wx matrix multipli-
cation is replaced by a convolution. Vi,j is the continuous
variable that we optimize over and h (Vi,j) can be any dif-
ferentiable function that takes values between 0 and 1, i.e.,
h (Vi,j) 2 [0, 1]. The additional term freg (V) is a dif-
ferentiable regularizer that is introduced to encourage the
optimization variables h (Vi,j) to converge towards either
0 or 1, i.e., at convergence h (Vi,j) 2 {0, 1}.

We employ a rectified sigmoid as h (Vi,j), proposed in
(Louizos et al., 2018). The rectified sigmoid is defined as

h (Vi,j) = clip(� (Vi,j) (⇣ � �) + �), 0, 1), (23)

where �(·) is the sigmoid function and, ⇣ and � are stretch
parameters, fixed to 1.1 and �0.1, respectively. The rec-
tified sigmoid has non-vanishing gradients as h (Vi,j) ap-
proaches 0 or 1, which helps the learning process when we
encourage h (Vi,j) to move to the extremities. For regular-
ization we use

freg (V) =
X

i,j

1� |2h (Vi,j)� 1|� , (24)

where we anneal the parameter �. This allows most of the
h (Vi,j) to adapt freely in the initial phase (higher �) to
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` and x
(`�1) denotes the input to layer `. Writing this in

matrix formulation (for flattened w
(`)), we have (Botev

et al., 2017)
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where ⌦ denotes Kronecker product of two matrices and
r2

z(`)L is the Hessian of the task loss w.r.t. z(`). It is clear
from (16) that the complexity issues are mainly caused by
r2

z(`)L that requires backpropagation of second derivatives
through the subsequent layers of the network. To tackle this,
we make the assumption that r2

z(`)L is a diagonal matrix,
denoted by diag

�
r2

z(`)Li,i

�
. This leads to
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Plugging (17) into our equation for finding the rounding
vector that optimizes the loss (13), we obtain
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where the optimization problem in (13) now decomposes
into independent sub-problems in (18). Each sub-problem
deals with a single row �W

(`)
k,: and (a) is the outcome of

making a further assumption that r2
z(`)Li,i = ci is a con-

stant independent of the input data samples. It is worthwhile
to note that optimizing (20) requires no knowledge of the
subsequent layers and the task loss. In (20), we are simply
minimizing the Mean Squared Error (MSE) introduced in
the preactivations z(`) due to quantization. It is interesting
to note that this is the same layer-wise objective as is opti-
mized in several neural network compression papers such
as Zhang et al. (2016); He et al. (2017). Here we arrive
at this objective in a principled way and conclude that op-
timizing the MSE, as specified in (20), is the best we can
do when assuming no knowledge of the rest of the network
past the layer that we are optimizing. The same holds for
e.g., setting per-layer activation ranges as in (Choukroun

et al., 2019). In the supplementary material we perform an
analogous analysis for convolutional layers.

The optimization problem in (20) can be tackled by either
precomputing E

⇥
x
(`�1)

x
(`�1),T

⇤
, as done in (19), and then

performing the optimization over �W
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k,: , or by performing

a single layer forward pass for each potential �W
(`)
k,: during

the optimization procedure.

In section 5, we empirically verify that the constant diagonal
approximation of r2

z(`)L does not negatively influence the
performance.

3.3. AdaRound

Solving (20) does not suffer from complexity issues associ-
ated with H

(w(`)). However, it is still an NP-hard discrete
optimization problem. Finding good (sub-optimal) solu-
tion with reasonable computational complexity can be a
challenge for larger number of optimization variables. To
tackle this we relax (20) to the following continuous opti-
mization problem based on soft quantization variables (the
superscripts are the same as (20))

argmin
V

���Wx� fWx

���
2

F
+ �freg (V) , (21)

where k·k2F denotes the Frobenius norm and fW are the
soft-quantized weights that we optimize over
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In the case of a convolutional layer the Wx matrix multipli-
cation is replaced by a convolution. Vi,j is the continuous
variable that we optimize over and h (Vi,j) can be any dif-
ferentiable function that takes values between 0 and 1, i.e.,
h (Vi,j) 2 [0, 1]. The additional term freg (V) is a dif-
ferentiable regularizer that is introduced to encourage the
optimization variables h (Vi,j) to converge towards either
0 or 1, i.e., at convergence h (Vi,j) 2 {0, 1}.

We employ a rectified sigmoid as h (Vi,j), proposed in
(Louizos et al., 2018). The rectified sigmoid is defined as

h (Vi,j) = clip(� (Vi,j) (⇣ � �) + �), 0, 1), (23)

where �(·) is the sigmoid function and, ⇣ and � are stretch
parameters, fixed to 1.1 and �0.1, respectively. The rec-
tified sigmoid has non-vanishing gradients as h (Vi,j) ap-
proaches 0 or 1, which helps the learning process when we
encourage h (Vi,j) to move to the extremities. For regular-
ization we use

freg (V) =
X

i,j

1� |2h (Vi,j)� 1|� , (24)

where we anneal the parameter �. This allows most of the
h (Vi,j) to adapt freely in the initial phase (higher �) to
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into independent sub-problems in (18). Each sub-problem
deals with a single row �W
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k,: and (a) is the outcome of

making a further assumption that r2
z(`)Li,i = ci is a con-

stant independent of the input data samples. It is worthwhile
to note that optimizing (20) requires no knowledge of the
subsequent layers and the task loss. In (20), we are simply
minimizing the Mean Squared Error (MSE) introduced in
the preactivations z(`) due to quantization. It is interesting
to note that this is the same layer-wise objective as is opti-
mized in several neural network compression papers such
as Zhang et al. (2016); He et al. (2017). Here we arrive
at this objective in a principled way and conclude that op-
timizing the MSE, as specified in (20), is the best we can
do when assuming no knowledge of the rest of the network
past the layer that we are optimizing. The same holds for
e.g., setting per-layer activation ranges as in (Choukroun

et al., 2019). In the supplementary material we perform an
analogous analysis for convolutional layers.

The optimization problem in (20) can be tackled by either
precomputing E
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, as done in (19), and then

performing the optimization over �W
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k,: , or by performing

a single layer forward pass for each potential �W
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k,: during

the optimization procedure.

In section 5, we empirically verify that the constant diagonal
approximation of r2

z(`)L does not negatively influence the
performance.

3.3. AdaRound

Solving (20) does not suffer from complexity issues associ-
ated with H

(w(`)). However, it is still an NP-hard discrete
optimization problem. Finding good (sub-optimal) solu-
tion with reasonable computational complexity can be a
challenge for larger number of optimization variables. To
tackle this we relax (20) to the following continuous opti-
mization problem based on soft quantization variables (the
superscripts are the same as (20))

argmin
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In the case of a convolutional layer the Wx matrix multipli-
cation is replaced by a convolution. Vi,j is the continuous
variable that we optimize over and h (Vi,j) can be any dif-
ferentiable function that takes values between 0 and 1, i.e.,
h (Vi,j) 2 [0, 1]. The additional term freg (V) is a dif-
ferentiable regularizer that is introduced to encourage the
optimization variables h (Vi,j) to converge towards either
0 or 1, i.e., at convergence h (Vi,j) 2 {0, 1}.

We employ a rectified sigmoid as h (Vi,j), proposed in
(Louizos et al., 2018). The rectified sigmoid is defined as

h (Vi,j) = clip(� (Vi,j) (⇣ � �) + �), 0, 1), (23)

where �(·) is the sigmoid function and, ⇣ and � are stretch
parameters, fixed to 1.1 and �0.1, respectively. The rec-
tified sigmoid has non-vanishing gradients as h (Vi,j) ap-
proaches 0 or 1, which helps the learning process when we
encourage h (Vi,j) to move to the extremities. For regular-
ization we use

freg (V) =
X

i,j

1� |2h (Vi,j)� 1|� , (24)

where we anneal the parameter �. This allows most of the
h (Vi,j) to adapt freely in the initial phase (higher �) to

round down learned value between [0,1]+

Regularizer forces V to be 0 or 1
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Optimization #bits W/A Resnet18 Resnet50 InceptionV3 MobilenetV2

Full precision 32/32 69.68 76.07 77.40 71.72
DFQ (Nagel et al., 2019) 8/8 69.7 - - 71.2

Nearest 4/32 23.99 35.60 1.67 8.09
OMSE+opt(Choukroun et al., 2019) 4⇤/32 67.12 74.67 75.45 -
OCS (Zhao et al., 2019) 4/32 - 66.2 4.8 -
AdaRound 4/32 68.71±0.06 75.23±0.04 75.76±0.09 69.78±0.05

†

DFQ (our impl.) 4/8 38.98 52.84 - 46.57
Bias corr (Banner et al., 2019) 4⇤/8 67.4 74.8 59.5 -
AdaRound w/ act quant 4/8 68.55±0.01 75.01±0.05 75.72±0.09 69.25±0.06

†

Table 7. Comparison among different post-training quantization strategies in the literature. We report results for various models in terms
of ImageNet validation accuracy (%). *Uses per channel quantization. †Using CLE (Nagel et al., 2019) as preprocessing.

Figure 4. The effect on ImageNet validation accuracy when using
different number of images belonging to different datasets for
AdaRound optimization.

on the more challenging networks, InceptionV3 and Mo-
bilenetV2, AdaRound stays within 2% of the original accu-
racy and outperforms any competing method.

To be able to compare to methods that also do activation
quantization, we report results of AdaRound with all ac-
tivation tensors quantized to 8 bits. For this scenario, we
quantized the activations to 8 bits and set the scaling factor
for the activation quantizers based on the minimum and
maximum activations observed. We notice that activation
quantization, in most cases, does not significantly harm the
validation accuracy. AdaRound again outperforms the com-
peting methods such as DFQ (Nagel et al., 2019) and bias
correction (Banner et al., 2019).

Semantic segmentation To demonstrate the wider appli-
cability of AdaRound, we apply it to DeeplabV3+ (Chen
et al., 2018) evaluated on Pascal VOC (Everingham et al.,
2015). Since the input images here are significantly big-
ger, we only use 512 images to optimize AdaRound. All
other aspects of the experimental setup stay the same. To
the best of our knowledge, there are no other post-training

Optimization #bits W/A mIOU

Full precision 32/32 72.94
DFQ (Nagel et al., 2019) 8/8 72.33
Nearest 4/8 6.09
DFQ (our impl.) 4/8 14.45

AdaRound 4/32 70.89±0.33
AdaRound w/ act quant 4/8 70.86±0.37

Table 8. Comparison among different post-training quantization
strategies, in terms of Mean Intersection Over Union (mIOU) for
DeeplabV3+ (MobileNetV2 backend) on Pascal VOC.

quantization methods doing 4-bit quantization for semantic
segmentation. DFQ works well for 8 bits, however perfor-
mance drastically drops when going down to 4-bit weight
quantization. AdaRound still performs well for 4 bits and
has only a 2% performance decrease for 4-bit weights and
8-bit activations quantization.

6. Conclusion

In this paper we proposed AdaRound, a new rounding
method for post-training quantization of neural network
weights. AdaRound improves significantly over rounding-
to-nearest, which has poor performance for lower bit widths.
We framed and analyzed the rounding problem theoreti-
cally and by making appropriate approximations we arrive
at a practical method. AdaRound is computationally fast,
uses only a small number of unlabeled data examples, does
not need end-to-end fine-tuning, and can be applied to any
neural network that has convolutional or fully-connected
layers without any restriction. AdaRound establishes a new
state-of-the-art for post-training weight quantization with
significant gains. It can push networks like Resnet18 and
Resnet50 to 4-bit weights while keeping the accuracy drop
within 1%.
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AdaRound optimization.

on the more challenging networks, InceptionV3 and Mo-
bilenetV2, AdaRound stays within 2% of the original accu-
racy and outperforms any competing method.

To be able to compare to methods that also do activation
quantization, we report results of AdaRound with all ac-
tivation tensors quantized to 8 bits. For this scenario, we
quantized the activations to 8 bits and set the scaling factor
for the activation quantizers based on the minimum and
maximum activations observed. We notice that activation
quantization, in most cases, does not significantly harm the
validation accuracy. AdaRound again outperforms the com-
peting methods such as DFQ (Nagel et al., 2019) and bias
correction (Banner et al., 2019).

Semantic segmentation To demonstrate the wider appli-
cability of AdaRound, we apply it to DeeplabV3+ (Chen
et al., 2018) evaluated on Pascal VOC (Everingham et al.,
2015). Since the input images here are significantly big-
ger, we only use 512 images to optimize AdaRound. All
other aspects of the experimental setup stay the same. To
the best of our knowledge, there are no other post-training
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Full precision 32/32 72.94
DFQ (Nagel et al., 2019) 8/8 72.33
Nearest 4/8 6.09
DFQ (our impl.) 4/8 14.45

AdaRound 4/32 70.89±0.33
AdaRound w/ act quant 4/8 70.86±0.37

Table 8. Comparison among different post-training quantization
strategies, in terms of Mean Intersection Over Union (mIOU) for
DeeplabV3+ (MobileNetV2 backend) on Pascal VOC.

quantization methods doing 4-bit quantization for semantic
segmentation. DFQ works well for 8 bits, however perfor-
mance drastically drops when going down to 4-bit weight
quantization. AdaRound still performs well for 4 bits and
has only a 2% performance decrease for 4-bit weights and
8-bit activations quantization.

6. Conclusion

In this paper we proposed AdaRound, a new rounding
method for post-training quantization of neural network
weights. AdaRound improves significantly over rounding-
to-nearest, which has poor performance for lower bit widths.
We framed and analyzed the rounding problem theoreti-
cally and by making appropriate approximations we arrive
at a practical method. AdaRound is computationally fast,
uses only a small number of unlabeled data examples, does
not need end-to-end fine-tuning, and can be applied to any
neural network that has convolutional or fully-connected
layers without any restriction. AdaRound establishes a new
state-of-the-art for post-training weight quantization with
significant gains. It can push networks like Resnet18 and
Resnet50 to 4-bit weights while keeping the accuracy drop
within 1%.

Comparison to literature
Setting a new SOTA for 4-bit post-training weight quantization
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github.com/quic/aimet

github.com/quic/aimet-model-zoo

Tools are open-sourced 
through AIMET

AIMET Model Zoo is a product of Qualcomm Innovation Center, Inc. 
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Join our open-source projects

AIMET
State-of-the-art quantization and compression techniques

github.com/quic/aimet

AIMET Model Zoo
Accurate pre-trained 8-bit quantized models

github.com/quic/aimet-model-zoo
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*: Comparison between FP32 model and INT8 model quantized with AIMET.
For further details, check out: https://github.com/quic/aimet-model-zoo/

ResNet-50
(v1)

Top-1 accuracy*

FP32 INT8

75.21% 74.96%

MobileNet-
v2-1.4

Top-1 accuracy*

FP32 INT8

75% 74.21%

EfficientNet
Lite

Top-1 accuracy*

FP32 INT8

74.93% 74.99%

SSD 
MobileNet-v2

mAP*

FP32 INT8
0.2469 0.2456

RetinaNet

mAP*

FP32 INT8
0.35 0.349

Pose 
estimation

mAP*

FP32 INT8
0.383 0.379

SRGAN

PSNR*

FP32 INT8
25.45 24.78

MobileNetV2

Top-1 accuracy*

FP32 INT8

7167% 71.14%

EfficientNet-
lite0

Top-1 accuracy*

FP32 INT8

75.42% 74.44%

DeepLabV3+

mIoU*

FP32 INT8

72.62% 72.22%

MobileNetV2-
SSD-Lite

mAP*

FP32 INT8
68.7% 68.6%

Pose 
estimation

mAP*

FP32 INT8
0.364 0.359

SRGAN

PSNR

FP32 INT8
25.51 25.5

DeepSpeech2

WER*

FP32 INT8
9.92% 10.22%

AIMET Model Zoo includes popular quantized AI models
Accuracy is maintained for INT8 models — less than 1% loss* 
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<1%
Loss in

accuracy*

Tensorflow Pytorch
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What’s next in efficient 
on-device AI
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Ultimately limited gains from NAS, compression, uniform quantization 
Current tools optimize existing architectures, leading to 1-3x gains over standard networks on device
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]

FPS

Mobile SoC throughput1
(Adreno 660 GPU)

224x224 images

3x
Faster than 
ResNet50 

2x
Less MAC’s

than ResNet50 

8-bit Integer

4-bit Integer

up to 

16X

up to 

64X

NAS Compression

1 Qualcomm Adreno 660 GPU in the Snapdragon 888 running on the Samsung Galaxy S21
[2]Andrey Kuzmin, et al, “Taxonomy and Evaluation of Structured Compression of Convolutional Neural Networks”, Arxiv 2019

[2]

4-8b established
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Throughput

Baseline Models

8bit Baseline
Pareto Front

HW-Aware 8bit NAS, 
Compressed Pareto Front

1.2-3x What’s next?

What’s next in efficient AI models?
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Mixed-Precision 
Quantized NAS
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Mixed Precision outperforms uniform quantization 

Mart Van Baalen, et ak “Bayesian Bits: Unifying Quantization and Pruning”, Neurips 2020

Bayesian Bits: Neural Networks can be optimized for mixed-precision.

During training, the network automatically finds the optimal 
trade-off between network complexity and accuracy

The result: Some layers are fine with 8 bits, while
others are fine with 2 bits. And some layers are 

pruned (green)
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Many Ways to gain from mixed-precision

Bert Moons, et al, “Envision: a 0.26-to-10 TOPS/W Subword-Parallel Dynamic-Voltage-Accuracy-Frequency-Scalable Convolutional Neural Network Processor in 28nm FDSOI”, ISSCC2017

• DVAFS: DVAS + subword parallelism op/J 10x @ 2b vs 8b

An academic system level example
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Mixed Precision Quantized NAS

Tianzhe Wang, et al, “”APQ: Joint Search for Network Architecture, Pruning and Quantization Policy”,  CVPR2020

APQ*

• APQ builds on top of OFA

• +/- 1%, or 2.2x BOPS gains 
expected through joint NAS 
and Quantization
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8bit Baseline
Pareto Front

8bit NAS, 
Compressed

1.2-3x 1-2x

<8bit mixed-
precision NAS

What’s next in efficient AI models?
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Conditional networks
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Conditional computing as a complementary technique to NAS
Input-dependent network architectures spend less time on easier samples

Classification: some samples are easier than others

Copyright Pixel Addict and Doyle (CC BY-ND 2.0), no changes made
found through Huang, G, et al, ”Multi-Scale Dense Networks for Resource Efficient Image Classification”, ICLR2018
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Conditional computing as a complementary technique to NAS
Input-dependent network architectures spend less time on easier samples

Huang, G, et al, ”Multi-Scale Dense Networks for Resource Efficient Image Classification”, ICLR2018

Early exiting, some samples are easier than others

Early exit 1 Early exit 2 Early exit 3
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Conditional computing as a complementary technique to NAS
Input-dependent network architectures spend less time on easier samples

Segmentation: backgrounds are 
abundant and easy to recognize

Detection: Objects of interest are 
relatively rare

62
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Conditional computing as a complementary technique to NAS
Input-dependent network architectures spend less time on easier samples

Dynamic Convolutions: exploiting spatial sparsity

Thomas Verelst, et al, “Dynamic Convolutions: Exploiting
spatial sparsity for faster inference”, CVPR20

>20%
Less MACs at 

similar accuracy
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Conditional computing as a complementary technique to NAS
Input-dependent network architectures spend less time on easier samples

Frame 1

Video: Subsequent frames are correlated

Frame 2

Artur Andrzej, https://commons.wikimedia.org/wiki/File:Gdańsk_skrzyżowanie_ulic_Grunwaldzkiej_i_Słowackiego.jpg
(Creative Commons CC0 1.0 Universal Public Domain Dedication), no changes made

https://commons.wikimedia.org/wiki/File:Gda%C5%84sk_skrzy%C5%BCowanie_ulic_Grunwaldzkiej_i_S%C5%82owackiego.jpg
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Conditional computing as a complementary technique to NAS
Input-dependent network architectures spend less time on easier samples

Temporal Skip-Convolutions in video segmentation/detection

Amirhossein Habibian, et al, “Skip-Convolutions for Efficient Video Processing”, CVPR21

2-4x
Less MACs at 

similar 
precision
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Conditional computing as a complementary technique to NAS
Input-dependent network architectures spend less time on easier samples

Conditional Early exiting in video/action recognition

Amir Ghodrati, et al, “FrameExit: Conditional Early Exiting for efficient Video Recognition”, CVPR21
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• Energy-Efficient machine learning and the 
computational budget gap

• The Model-Efficiency Pipeline reduces the cost of 
on-device inference

Qualcomm Innovation Center, Inc. open sources 
through AI Model Efficiency Toolkit (AIMET)

•What’s next in energy-efficient AI

Overview

NAS Compression Quantization
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