
tinyML EMEA Technical Forum 2021 Proceedings

June 7 – 10, 2021
Virtual Event

Bert Moons,
Engineer, Senior
Qualcomm Technologies Netherlands B.V.

June 8, 2021 @QCOMResearch

The Model-
Efficiency Pipeline
Enabling deep learning
inference at the edge

2

Qualcomm
AI Research

3

Advancing research to make AI ubiquitous

AutomotiveIoT Mobile Cloud

We are creating platform innovations to scale AI across the industry

Power efficiency Efficient learningPersonalization

Action
Reinforcement learning
for decision making

Perception
Object detection, speech
recognition, contextual fusion

Reasoning
Scene understanding, language
understanding, behavior prediction

44

Qualcomm Research
Netherlands

qualcomm.com/careers

search for Amsterdam

5

• Energy-Efficient machine learning and the
computational budget gap

• The Model-Efficiency Pipeline reduces the cost of
on-device inference

Qualcomm Innovation Center, Inc. open sources
through AI Model Efficiency Toolkit (AIMET)

•What’s next in energy-efficient AI

Agenda

NAS Compression Quantization

66

Video monitoringExtended reality Smart citiesSmart factories

Autonomous vehiclesVideo conferencingSmart homesSmartphone

AI is being used all around us
increasing productivity, enhancing collaboration,
and transforming industries

AI video analysis is on the rise
Trend toward more cameras, higher resolution,
and increased frame rate across devices

77Source: Welling

Increasingly large and complex neural networks for Natural Language
Processing, Image and Video Processing2025

W
ei

gh
t p

ar
am

et
er

 c
ou

nt

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030

1943: First NN (+/- N=10)

1988:
NetTalk
(+/- N=20K)

2009: Hinton’s Deep
Belief Net (+/- N=10M)

2013: Google/Y!
(N=+/- 1B)

2025:
N = 100T = 1014

2017: Very large neural
networks (N = 137B)

1012

1010

108

106

1014

104

102

100

Deep neural networks
are energy hungry
and growing fast
AI is being powered by the explosive
growth of deep neural networks

2021: Extremely
large neural
networks (N = 1.6T)

88

Power and thermal
efficiency are essential

for on-device AI

The challenge of
AI workloads

Constrained mobile
environment

Very compute
intensive

Large,
complicated neural

network models

Complex
concurrencies

Always-on

Real-time

Must be thermally
efficient for sleek,
ultra-light designs

Storage/memory
bandwidth limitations

Requires long battery
life for all-day use

9

Trend 1:
Increasingly complex
Neural Networks:
Image, NLP, video,
ensembles, higher
resolution, …

The Deep Learning Budget Gap

C
om

pu
ta

tio
na

l B
ud

ge
t [

op
s/

s]

2016 2018 2020 2022

Neural Network Applications

10

Trend 1:
Increasingly complex
Neural Networks:
Image, NLP, video,
ensembles, higher
resolution, …

Trend 2:
Faster, more efficient
hardware platforms
close the Budget Gap

The Deep Learning Budget Gap

2018 2020 2022

Mobile AIP in 1W range

248 FPS1*

902 FPS2*

Budget Gap

1: Qualcomm® Hexagon™ 698 DSP in the Qualcomm® Snapdragon™ 865 running on the ASUS ROG Phone 3
2: Qualcomm® Hexagon™ 780 DSP in the Qualcomm® Snapdragon™ 780 running on the Oneplus 9 Pro
Qualcomm Hexagon and Qualcomm Snapdragon are products of Qualcomm Technologies, Inc. and/or its subsidiaries.
*: MobileNetEdge on mlperf https://mlcommons.org/en/inference-mobile-10/

Neural Network Applications

C
om

pu
ta

tio
na

l B
ud

ge
t [

op
s/

s]

11

The Deep Learning Budget Gap

2016 2018 2020 2022

Tiny AIP in 10mW range

Budget Gap

Neural Network Applications
Trend 1:
Increasingly complex
Neural Networks:
Image, NLP, video,
ensembles, higher
resolution, …

Trend 2:
Faster, more efficient
hardware platforms
close the Budget Gap

C
om

pu
ta

tio
na

l B
ud

ge
t [

op
s/

s]

12

Trend 1:
Increasingly complex
Neural Networks:
Image, NLP, video,
ensembles, higher
resolution, …

Trend 2:
Faster, more efficient
hardware platforms
close the Budget Gap

Trend 3:
Faster, optimized
Neural Networks and
Applications close the
Budget Gap

The Deep Learning Budget Gap

2018 2020 2022

Mobile AIP in 1W range 248 FPS1*

902 FPS2*

Neural Network Applications

C
om

pu
ta

tio
na

l B
ud

ge
t [

op
s/

s]

Efficient Neural Networks

1: Qualcomm® Hexagon™ 698 DSP in the Qualcomm® Snapdragon™ 865 running on the ASUS ROG Phone 3
2: Qualcomm® Hexagon™ 780 DSP in the Qualcomm® Snapdragon™ 780 running on the Oneplus 9 Pro
Qualcomm Hexagon and Qualcomm Snapdragon are products of Qualcomm Technologies, Inc. and/or its subsidiaries.
*: MobileNetEdge on mlperf https://mlcommons.org/en/inference-mobile-10/

14

Trend 3: The Model-
Efficiency Pipeline

15

The Model-
Efficiency Pipeline

Multiple axes to shrink
AI models and run them
efficiently on hardware

Pruning and
Model

Compression

Accurate
Quantization

Neural
architecture

search

16

Training networks
from scratch is
expensive!

Neural Architecture Search: automated design of on-device optimal networks

>2 GPU months to train a single SotA network on ImageNet
~4k USD per network using commercial cloud services

17

Training networks
from scratch is
expensive!

Neural Architecture Search: automated design of on-device optimal networks

>2 GPU months to train a single SotA network on ImageNet
~4k USD per network using commercial cloud services

Manual network
design requires
training many
networks from scratch
for every device

Expert
Design Train

Evaluate

Expert
Design Train

Evaluate

Expert
Design Train

Evaluate

…

Spec A, Platform A Spec B, Platform B Spec C, Platform C

18

Training networks
from scratch is
expensive!

Neural Architecture Search: automated design of on-device optimal networks

>2 GPU months to train a single SotA network on ImageNet
~4k USD per network using commercial cloud services

Manual network
design requires
training many
networks from scratch
for every device

Solution

Expert
Design Train

Evaluate

Expert
Design Train

Evaluate

Expert
Design Train

Evaluate

…

Cheap, scalable Neural Architecture Search reduces design
and training costs of networks optimized for specific devices

Spec A, Platform A Spec B, Platform B Spec C, Platform C

20

Existing NAS
solutions do not
address all the
challenges

High cost
Brute force search is expensive
>40,000 epochs per platform

Lack diverse search
Hard to search in diverse spaces, with different
block-types, attention, and activations
Repeated training for every new scenario

Do not scale
Repeated training for every device
>40,000 epochs per platform

Unreliable hardware models
Requires differentiable cost-functions
Repeated training phase for every new device

21

Introducing new AI research

Efficient NAS with hardware-aware
optimization

Finds pareto-optimal architectures
in terms of accuracy-latency at low
cost

Distilling Optimal Neural
Network Architectures

DONNA

Distilling Optimal Neural Networks: Rapid Search in Diverse Spaces (Moons, Bert, et al., arXiv 2020)

Low cost
Low start-up cost equivalent to training
2-10 networks from scratch

Scalable
Scales to many hardware devices
at minimal cost

Reliable hardware
measurements
Uses direct hardware measurements instead
of a potentially inaccurate hardware model

Diverse search to find
the best models
Supports diverse spaces with different cell-
types, attention, and activation functions
(ReLU, Swish, etc.)

22

Varying parameters:

• Kernel Size

• Expansion Factors

• Network depth

• Network width

• Attention/activation

• Different efficient
layer types

DONNA 4-step process Objective: Build accuracy model of search space once, then deploy to many scenarios

Define reference
and search
space once

A

22

Define backbone:

• Fixed channels

• Head and Stem

1 2 3 4 5

Bert Moons et al, “”Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20

23

Define reference architecture and search-space once
A diverse search space is essential for finding optimal architectures with higher accuracy

Select reference
architecture
The largest model
in the search-space

Chop the NN
into blocks
Fix the STEM, HEAD,
blocks, strides,
channels at block-edge

Choose search space
Diverse factorized
hierarchical search space,
including variable cell-types,
kernel-size, expansion-rate,
depth, # channels, activation,
attention

STEM 1, s=2 2, s=2 3, s=2 4, s=1 5, s=2 HEAD
ch=32 ch=64 ch=96 ch=128 ch=196 ch=256

Conv
1x1

FCAvg

ch=1536

Conv
3x3s2

DW
Conv

ch=32

Kernel:
Expand:
Depth:
Attention:

3,5,7
2,3,4,6
1,2,3,4
SE, no SE

Activation:
Cell type:
Width scale:

ReLU/Swish
grouped, DW, …
0.5x, 1.0x

Choose diverse search space

Ch: channel; SE: Squeeze-and-Excitation

24

Define reference architecture and search-space once
Some example blocks in the shared search space: BasicBlocks, ShiftNets, MobileConv, Squeeze-and-Excitation

Choose search space

Examples of variable
cell types that can
be combined in a
single search space

STEM 1, s=2 2, s=2 3, s=2 4, s=1 5, s=2 HEAD

Ch: channel; SE: Squeeze-and-Excitation

ResNet-Style
BasicBlock [1]

MobileNet-Style
Inverted Bottleneck [2]

ShiftNets [4]Vision-Transformer [3]

[1] K. He, “Deep Residual Learning
for image recognition”, CVPR16

[2] M. Sandler, “MobileNEtV2: Inverted
Residuals and Linear Bottlenecks”,
CVPR18”

[3] A. Dosovitskiy, “An image is Worth
16x16 words: transformers for image
recognition at scale”, ICLR21

[4] W. Chen, “All you need is a few
shifts: Designing efficient convolutional
neural networks for image
classification”, CVPR19

25

Define reference architecture and search-space once
Some example blocks in the shared search space: BasicBlocks, ShiftNets, MobileConv, Squeeze-and-Excitation

Choose search space

Two example
models, pareto-
optimal on a desktop
GPU

STEM 1, s=2 2, s=2 3, s=2 4, s=1 5, s=2 HEAD

Model A, @73% ImageNet top-1

Model B, @79.5% ImageNet top-1

Distilling Optimal Neural Networks: Rapid Search in Diverse Spaces (Moons, Bert, et al., arXiv 2020)

26

Varying parameters:
• Kernel Size

• Expansion Factors

• Network depth

• Network width

• Attention/activation

• Different efficient
layer types

Approximate ideal projections
of a reference model through KD

1

1

MSE

2

2

MSE

3

3

MSE

4

4

MSE

5

5

MSE

Use quality of blockwise approximations
to build accuracy model

MSE
4

MSE
1

MSE
5

MSE
2

MSE
3

Define backbone:
• Fixed channels

• Head and Stem

1 2 3 4 5

DONNA 4-step process Objective: Build accuracy model of search space once, then deploy to many scenarios

26

Build accuracy model via
Knowledge Distillation
(KD) once

B
Define reference
and search
space once

A

Bert Moons et al, “”Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20

27

Build accuracy predictor via Blockwise Knowledge Distillation once
Low-cost hardware-agnostic training phase

Block library

Pretrain all blocks in search-
space through blockwise
knowledge distillation

Fast block training

Trivial parallelized training

Broad search space

Block
pretrained
weights

Block
quality
metrics

Finetuned
architectures

Architecture library

Quickly finetune a
representative set
of architectures

Finetune sampled
networks

Fast network training

Only 20-30 NN required

Accuracy predictor

Fit linear
regression
model

Linear Regression Model

Accurate predictions

Up to 10x improved
ranking vs DARTS

28

Build accuracy predictor via BKD once
Low-cost hardware-agnostic training phase

Accuracy predictor

Fit linear
regression
model

Linear Regression Model

Accurate predictions

Up to 10x improved
ranking vs DARTS

DONNA = Bert Moons et al, “”Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20
* Changlin Li, et al, “BossNAS: Exploring Hybrid CNN-transformers with Block-wisely Self-supervised Neural Architecture Search, Arxiv 2021

DONNA achieves up to 0.91 KT on
basic test sets and reliably extends to
test sets with previously unseen cell-
types: 0.8KT

State-of-the-art references achieve up to 0.65 KT ranking*

29

Varying parameters:
• Kernel Size

• Expansion Factors

• Network depth

• Network width

• Attention/activation

• Different efficient
layer types

Define backbone:
• Fixed channels

• Head and Stem

1 2 3 4 5

A

Approximate ideal projections
of a reference model through KD

1

MSE

2

MSE

3

MSE

4

MSE

5

MSE

Use quality of blockwise approximations
to build accuracy model

MSE
4

MSE
1

MSE
5

MSE
2

MSE
3

different compiler versions,
different image sizes

HW latency

P
re

di
ct

ed
 a

cc
ur

ac
y

Scenario-
specific
search

DONNA 4-step process Objective: Build accuracy model of search space once, then deploy to many scenarios

29

Build accuracy model via
Knowledge Distillation
(KD) once

B Evolutionary
search in 24hC

Define reference
and search
space once

1 2 3 4 5

Bert Moons et al, “”Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20

30

Evolutionary search with real hardware measurements
Scenario-specific search allows users to select optimal architectures for real-life deployments

Quick turnaround time
Results in +/- 1 day using one measurement device

NSGA: Non-dominated Sorting Genetic Algorithm

Accurate scenario-specific search
Captures all intricacies of the hardware platform
and software — e.g. run-time version or devices

NSGA-II

evolutionary
sampling
algorithm

Target HW

Task
accuracy
predictor

Predicted task accuracy

Measured latency on device

End-to-end
model

31

different compiler versions,
different image sizes

HW latency

P
re

di
ct

ed
 a

cc
ur

ac
y

Scenario-
specific
search

MSE
4

MSE
1

MSE
5

MSE
2

MSE
3

41 52 3

Use KD-initialized
blocks from step B
to finetune any
network in the
search space in
15-50 epochs
instead of 450

DONNA 4-step process Objective: Build accuracy model of search space once, then deploy to many scenarios

31

Evolutionary
search in 24h C Sample and

finetuneD

Varying parameters:
• Kernel Size

• Expansion Factors

• Network depth

• Network width

• Attention/activation

• Different efficient
layer types

Define backbone:
• Fixed channels

• Head and Stem

1 2 3 4 5

A

Approximate ideal projections
of a reference model through KD

1

MSE

2

MSE

3

MSE

4

MSE

5

MSE

Use quality of blockwise approximations
to build accuracy model

MSE
4

MSE
1

MSE
5

MSE
2

MSE
3

Build accuracy model via
Knowledge Distillation
(KD) once

B
Define reference
and search
space once

1 2 3 4 5

Bert Moons et al, “”Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20

32

Im
ag

eN
et

 T
op

-1
 v

al
ac

cu
ra

cy
 [%

]

Qualcomm Adreno 660 GPU in the Snapdragon 888 running on the Samsung Galaxy S21. 2: Qualcomm Hexagon 780 Processor in the Snapdragon 888 running on the Samsung Galaxy S21.

Qualcomm Adreno is a product of Qualcomm Technologies, Inc. and/or its subsidiaries.

DONNA finds state-of-the-art
networks for on-device scenarios
Quickly optimize and make tradeoffs in model accuracy with respect
to the deployment conditions that matter

of Parameters [M]

Parameters

FPS

Desktop GPU throughput

FPS

Mobile SoC throughput1
(Qualcomm® Adreno™ 660 GPU)

FPS

Mobile SoC throughput2
(Hexagon 780 Processor)

>20%
faster at similar

accuracy

>20%
faster at similar

accuracy

224x224 images 224x224 images224x224 images 672x672 images

>20%
faster at similar

accuracy

3333

DONNA == MnasNet-level diversity at 100x lower cost

*Training 1 model from scratch = 450 epochs

DONNA
efficiently
finds optimal
models over
diverse
scenarios
Cost of training
is a handful of
architectures*

Method Granularity
Macro-

diversity

Search-cost / scenario
1 scenario, 10

models/scenario [FSe]

Search-cost / scenario
∞ scenarios, 10

models/ scenario [FSe]

OFA Layer-level Fixed 2.7+10×[0.05-0.15] 0.5 – 1.5

DNA Layer-level Fixed 1.5+10×1 10

MNasNet Block-level Variable 90+10×1 100

This Work Block-level Variable 9+10×0.1 1

Good OK Not good

OFA = Han Cai, et al, “Once For All: Train One Network and Specialize it for Efficient deployment”, ICLR2020
DNA = Changlin Li, “Blockwisely Supervised Neural Architecture Search with Knowledge Distillation”, CVPR20
MNasNet = MingXing Tan, et al, “MNasNet: Platform-Aware Neural Architecture Search for Mobile”, CVPR19
This work = Bert Moons et al, “”Distilling Optimal Neural Networks: rapid search in diverse spaces, Arxiv20

Fse: From-Scratch-Equivalent training cost, 450 epochs

34

DONNA applies
directly to
downstream
tasks and non-
CNN neural
architectures
without
conceptual code
changes

Multiply Accumulate Operations [FLOPS]

ResNet-50

DEIT

VIT

Mobile models

P
re

di
ct

ed
 to

p
-1

 a
cc

ur
ac

y

VIT-B

DEIT-B

Object
Detection

Vision
Transformers

C
O

C
O

 V
A

L
m

A
P

(%
)

35

The Model-
Efficiency Pipeline

Multiple axes to shrink
AI models and run them
efficiently on hardware

Pruning and
Model

Compression

Accurate
Quantization

Neural
architecture

search

36

Unstructured Pruning of Neural Networks

Pruning removes unnecessary connections in the neural network.
Unstructured pruning is non-trivial to accelerate on parallel hardware.

Song Han, et al, “Deep compression: compressing deep Neural Networks with Pruning, Trained Quantization and Huffman Coding ”, NIPS2015

37

Structured compression through low rank approximations

Structured mathematical decompositions (SVD, CP, Tucker-II, Tensor-
train,…) are easier to accelerate on parallel hardware

Andrey Kuzmin, et al, “Taxonomy and Evaluation of Structured Compression of Convolutional Neural Networks”, Arxiv 2019

38

Structured compression through low rank approximations
• (Structured) Channel Pruning

and Spatial-SVD typically
work best.

• 50% compression @0.3%
accuracy loss for ResNet-50

Andrey Kuzmin, et al, “Taxonomy and Evaluation of Structured Compression of Convolutional Neural Networks”, Arxiv 2019

39

The Model-
Efficiency Pipeline

Multiple axes to shrink
AI models and run them
efficiently on hardware

Pruning and
Model

Compression

Accurate
Quantization

Neural
architecture

search

40

What is neural network quantization?

For any given trained neural network:

• Store weights in n bits

• Compute calculations in n bits

Quantization example

Benefits

• Reduced memory usage

• Reduced energy usage

• Lower latency

4141

Data-free
quantization

No training

Data free

Pushing the
limits of what’s
possible with
quantization

AdaRound

No training

Minimal unlabeled data

Outperform rounding
to nearest

SOTA 8-bit results

<1%
Accuracy drop for
MobileNet V2
against FP32 model

Data-Free Quantization Through Weight Equalization and
Bias Correction (Nagel, van Baalen, et al., ICCV 2019)

SOTA: State-of-the-art

<2.5%
Accuracy drop for
MobileNet V2
against FP32 model

Up or Down? Adaptive Rounding for Post-Training
Quantization (Nagel, Amjad, et al., ICML 2020)

Bayesian bits

Training required

Training data required

Jointly learns bit-width
precision and pruning

Automated mixed-precision

SOTA mixed-precision results

<1%

Accuracy drop for
MobileNet V2 against
FP32 model for mixed
precision model with
computational
complexity equivalent
to a 4-bit weight
model

Bayesian Bits: Unifying Quantization and Pruning
van Baalen, Louizos, et al., NeurIPS 2020)

4141

SOTA 4-bit weight results

Baseline training-free
method with equalization
and bias correction

42

Adaround

• Traditional post-training weight quantization uses rounding to nearest:

• However, rounding-to-nearest is not optimal

Rounding Method Accuracy (%)

Nearest 52.29

Floor / Ceil 00.10

Stochastic 52.06±5.52

Stochastic (best) 63.06

4-bit weight quantization of 1st layer of Resnet18
,tested on ImageNet.

Up or Down? Adaptive Rounding for Post-Training Quantization (Nagel, Amjad, et al., ICML 2020)

43

Up or Down?
How can we systematically find the best rounding choice?

44

AdaRound: learning to round

• Minimize per-layer
L2 loss of output
features

• Regularization:

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Adaptive Rounding for Post-Training Quantization

same fully connected layer we have

@2L
@W(`)

i,j @W
(`)
m,o

=
@

@W(`)
m,o

"
@L
@z(`)i

· x(`�1)
j

#
(14)

=
@2L

@z(`)i @z(`)m

· x(`�1)
j x

(`�1)
o , (15)

where z
(`) = W

(`)
x
(`�1) are the preactivations for layer

` and x
(`�1) denotes the input to layer `. Writing this in

matrix formulation (for flattened w
(`)), we have (Botev

et al., 2017)

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦r2

z(`)L
i
, (16)

where ⌦ denotes Kronecker product of two matrices and
r2

z(`)L is the Hessian of the task loss w.r.t. z(`). It is clear
from (16) that the complexity issues are mainly caused by
r2

z(`)L that requires backpropagation of second derivatives
through the subsequent layers of the network. To tackle this,
we make the assumption that r2

z(`)L is a diagonal matrix,
denoted by diag

�
r2

z(`)Li,i

�
. This leads to

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦ diag(r2

z(`)Li,i)
i
. (17)

Plugging (17) into our equation for finding the rounding
vector that optimizes the loss (13), we obtain

argmin
�W

(`)
k,:

E
h
r2

z(`)Lk,k ·�W(`)
k,:x

(`�1)x(`�1),T�W(`)
k,:

,T
i

(18)
(a)
= argmin

�W
(`)
k,:

�W(`)
k,: E

h
x(`�1)x(`�1),T

i
�W(`)

k,:
,T (19)

= argmin
�W

(`)
k,:

E
⇣

�W(`)
k,:x

(`�1)
⌘2

�
, (20)

where the optimization problem in (13) now decomposes
into independent sub-problems in (18). Each sub-problem
deals with a single row �W

(`)
k,: and (a) is the outcome of

making a further assumption that r2
z(`)Li,i = ci is a con-

stant independent of the input data samples. It is worthwhile
to note that optimizing (20) requires no knowledge of the
subsequent layers and the task loss. In (20), we are simply
minimizing the Mean Squared Error (MSE) introduced in
the preactivations z(`) due to quantization. It is interesting
to note that this is the same layer-wise objective as is opti-
mized in several neural network compression papers such
as Zhang et al. (2016); He et al. (2017). Here we arrive
at this objective in a principled way and conclude that op-
timizing the MSE, as specified in (20), is the best we can
do when assuming no knowledge of the rest of the network
past the layer that we are optimizing. The same holds for
e.g., setting per-layer activation ranges as in (Choukroun

et al., 2019). In the supplementary material we perform an
analogous analysis for convolutional layers.

The optimization problem in (20) can be tackled by either
precomputing E

⇥
x
(`�1)

x
(`�1),T

⇤
, as done in (19), and then

performing the optimization over �W
(`)
k,: , or by performing

a single layer forward pass for each potential �W
(`)
k,: during

the optimization procedure.

In section 5, we empirically verify that the constant diagonal
approximation of r2

z(`)L does not negatively influence the
performance.

3.3. AdaRound

Solving (20) does not suffer from complexity issues associ-
ated with H

(w(`)). However, it is still an NP-hard discrete
optimization problem. Finding good (sub-optimal) solu-
tion with reasonable computational complexity can be a
challenge for larger number of optimization variables. To
tackle this we relax (20) to the following continuous opti-
mization problem based on soft quantization variables (the
superscripts are the same as (20))

argmin
V

���Wx� fWx

���
2

F
+ �freg (V) , (21)

where k·k2F denotes the Frobenius norm and fW are the
soft-quantized weights that we optimize over

fW = s · clip
✓�

W

s

⌫
+ h (V) , n, p

◆
. (22)

In the case of a convolutional layer the Wx matrix multipli-
cation is replaced by a convolution. Vi,j is the continuous
variable that we optimize over and h (Vi,j) can be any dif-
ferentiable function that takes values between 0 and 1, i.e.,
h (Vi,j) 2 [0, 1]. The additional term freg (V) is a dif-
ferentiable regularizer that is introduced to encourage the
optimization variables h (Vi,j) to converge towards either
0 or 1, i.e., at convergence h (Vi,j) 2 {0, 1}.

We employ a rectified sigmoid as h (Vi,j), proposed in
(Louizos et al., 2018). The rectified sigmoid is defined as

h (Vi,j) = clip(� (Vi,j) (⇣ � �) + �), 0, 1), (23)

where �(·) is the sigmoid function and, ⇣ and � are stretch
parameters, fixed to 1.1 and �0.1, respectively. The rec-
tified sigmoid has non-vanishing gradients as h (Vi,j) ap-
proaches 0 or 1, which helps the learning process when we
encourage h (Vi,j) to move to the extremities. For regular-
ization we use

freg (V) =
X

i,j

1� |2h (Vi,j)� 1|� , (24)

where we anneal the parameter �. This allows most of the
h (Vi,j) to adapt freely in the initial phase (higher �) to

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Adaptive Rounding for Post-Training Quantization

same fully connected layer we have

@2L
@W(`)

i,j @W
(`)
m,o

=
@

@W(`)
m,o

"
@L
@z(`)i

· x(`�1)
j

#
(14)

=
@2L

@z(`)i @z(`)m

· x(`�1)
j x

(`�1)
o , (15)

where z
(`) = W

(`)
x
(`�1) are the preactivations for layer

` and x
(`�1) denotes the input to layer `. Writing this in

matrix formulation (for flattened w
(`)), we have (Botev

et al., 2017)

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦r2

z(`)L
i
, (16)

where ⌦ denotes Kronecker product of two matrices and
r2

z(`)L is the Hessian of the task loss w.r.t. z(`). It is clear
from (16) that the complexity issues are mainly caused by
r2

z(`)L that requires backpropagation of second derivatives
through the subsequent layers of the network. To tackle this,
we make the assumption that r2

z(`)L is a diagonal matrix,
denoted by diag

�
r2

z(`)Li,i

�
. This leads to

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦ diag(r2

z(`)Li,i)
i
. (17)

Plugging (17) into our equation for finding the rounding
vector that optimizes the loss (13), we obtain

argmin
�W

(`)
k,:

E
h
r2

z(`)Lk,k ·�W(`)
k,:x

(`�1)x(`�1),T�W(`)
k,:

,T
i

(18)
(a)
= argmin

�W
(`)
k,:

�W(`)
k,: E

h
x(`�1)x(`�1),T

i
�W(`)

k,:
,T (19)

= argmin
�W

(`)
k,:

E
⇣

�W(`)
k,:x

(`�1)
⌘2

�
, (20)

where the optimization problem in (13) now decomposes
into independent sub-problems in (18). Each sub-problem
deals with a single row �W

(`)
k,: and (a) is the outcome of

making a further assumption that r2
z(`)Li,i = ci is a con-

stant independent of the input data samples. It is worthwhile
to note that optimizing (20) requires no knowledge of the
subsequent layers and the task loss. In (20), we are simply
minimizing the Mean Squared Error (MSE) introduced in
the preactivations z(`) due to quantization. It is interesting
to note that this is the same layer-wise objective as is opti-
mized in several neural network compression papers such
as Zhang et al. (2016); He et al. (2017). Here we arrive
at this objective in a principled way and conclude that op-
timizing the MSE, as specified in (20), is the best we can
do when assuming no knowledge of the rest of the network
past the layer that we are optimizing. The same holds for
e.g., setting per-layer activation ranges as in (Choukroun

et al., 2019). In the supplementary material we perform an
analogous analysis for convolutional layers.

The optimization problem in (20) can be tackled by either
precomputing E

⇥
x
(`�1)

x
(`�1),T

⇤
, as done in (19), and then

performing the optimization over �W
(`)
k,: , or by performing

a single layer forward pass for each potential �W
(`)
k,: during

the optimization procedure.

In section 5, we empirically verify that the constant diagonal
approximation of r2

z(`)L does not negatively influence the
performance.

3.3. AdaRound

Solving (20) does not suffer from complexity issues associ-
ated with H

(w(`)). However, it is still an NP-hard discrete
optimization problem. Finding good (sub-optimal) solu-
tion with reasonable computational complexity can be a
challenge for larger number of optimization variables. To
tackle this we relax (20) to the following continuous opti-
mization problem based on soft quantization variables (the
superscripts are the same as (20))

argmin
V

���Wx� fWx

���
2

F
+ �freg (V) , (21)

where k·k2F denotes the Frobenius norm and fW are the
soft-quantized weights that we optimize over

fW = s · clip
✓�

W

s

⌫
+ h (V) , n, p

◆
. (22)

In the case of a convolutional layer the Wx matrix multipli-
cation is replaced by a convolution. Vi,j is the continuous
variable that we optimize over and h (Vi,j) can be any dif-
ferentiable function that takes values between 0 and 1, i.e.,
h (Vi,j) 2 [0, 1]. The additional term freg (V) is a dif-
ferentiable regularizer that is introduced to encourage the
optimization variables h (Vi,j) to converge towards either
0 or 1, i.e., at convergence h (Vi,j) 2 {0, 1}.

We employ a rectified sigmoid as h (Vi,j), proposed in
(Louizos et al., 2018). The rectified sigmoid is defined as

h (Vi,j) = clip(� (Vi,j) (⇣ � �) + �), 0, 1), (23)

where �(·) is the sigmoid function and, ⇣ and � are stretch
parameters, fixed to 1.1 and �0.1, respectively. The rec-
tified sigmoid has non-vanishing gradients as h (Vi,j) ap-
proaches 0 or 1, which helps the learning process when we
encourage h (Vi,j) to move to the extremities. For regular-
ization we use

freg (V) =
X

i,j

1� |2h (Vi,j)� 1|� , (24)

where we anneal the parameter �. This allows most of the
h (Vi,j) to adapt freely in the initial phase (higher �) to

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Adaptive Rounding for Post-Training Quantization

same fully connected layer we have

@2L
@W(`)

i,j @W
(`)
m,o

=
@

@W(`)
m,o

"
@L
@z(`)i

· x(`�1)
j

#
(14)

=
@2L

@z(`)i @z(`)m

· x(`�1)
j x

(`�1)
o , (15)

where z
(`) = W

(`)
x
(`�1) are the preactivations for layer

` and x
(`�1) denotes the input to layer `. Writing this in

matrix formulation (for flattened w
(`)), we have (Botev

et al., 2017)

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦r2

z(`)L
i
, (16)

where ⌦ denotes Kronecker product of two matrices and
r2

z(`)L is the Hessian of the task loss w.r.t. z(`). It is clear
from (16) that the complexity issues are mainly caused by
r2

z(`)L that requires backpropagation of second derivatives
through the subsequent layers of the network. To tackle this,
we make the assumption that r2

z(`)L is a diagonal matrix,
denoted by diag

�
r2

z(`)Li,i

�
. This leads to

H
(w(`)) = E

h
x
(`�1)

x
(`�1),T ⌦ diag(r2

z(`)Li,i)
i
. (17)

Plugging (17) into our equation for finding the rounding
vector that optimizes the loss (13), we obtain

argmin
�W

(`)
k,:

E
h
r2

z(`)Lk,k ·�W(`)
k,:x

(`�1)x(`�1),T�W(`)
k,:

,T
i

(18)
(a)
= argmin

�W
(`)
k,:

�W(`)
k,: E

h
x(`�1)x(`�1),T

i
�W(`)

k,:
,T (19)

= argmin
�W

(`)
k,:

E
⇣

�W(`)
k,:x

(`�1)
⌘2

�
, (20)

where the optimization problem in (13) now decomposes
into independent sub-problems in (18). Each sub-problem
deals with a single row �W

(`)
k,: and (a) is the outcome of

making a further assumption that r2
z(`)Li,i = ci is a con-

stant independent of the input data samples. It is worthwhile
to note that optimizing (20) requires no knowledge of the
subsequent layers and the task loss. In (20), we are simply
minimizing the Mean Squared Error (MSE) introduced in
the preactivations z(`) due to quantization. It is interesting
to note that this is the same layer-wise objective as is opti-
mized in several neural network compression papers such
as Zhang et al. (2016); He et al. (2017). Here we arrive
at this objective in a principled way and conclude that op-
timizing the MSE, as specified in (20), is the best we can
do when assuming no knowledge of the rest of the network
past the layer that we are optimizing. The same holds for
e.g., setting per-layer activation ranges as in (Choukroun

et al., 2019). In the supplementary material we perform an
analogous analysis for convolutional layers.

The optimization problem in (20) can be tackled by either
precomputing E

⇥
x
(`�1)

x
(`�1),T

⇤
, as done in (19), and then

performing the optimization over �W
(`)
k,: , or by performing

a single layer forward pass for each potential �W
(`)
k,: during

the optimization procedure.

In section 5, we empirically verify that the constant diagonal
approximation of r2

z(`)L does not negatively influence the
performance.

3.3. AdaRound

Solving (20) does not suffer from complexity issues associ-
ated with H

(w(`)). However, it is still an NP-hard discrete
optimization problem. Finding good (sub-optimal) solu-
tion with reasonable computational complexity can be a
challenge for larger number of optimization variables. To
tackle this we relax (20) to the following continuous opti-
mization problem based on soft quantization variables (the
superscripts are the same as (20))

argmin
V

���Wx� fWx

���
2

F
+ �freg (V) , (21)

where k·k2F denotes the Frobenius norm and fW are the
soft-quantized weights that we optimize over

fW = s · clip
✓�

W

s

⌫
+ h (V) , n, p

◆
. (22)

In the case of a convolutional layer the Wx matrix multipli-
cation is replaced by a convolution. Vi,j is the continuous
variable that we optimize over and h (Vi,j) can be any dif-
ferentiable function that takes values between 0 and 1, i.e.,
h (Vi,j) 2 [0, 1]. The additional term freg (V) is a dif-
ferentiable regularizer that is introduced to encourage the
optimization variables h (Vi,j) to converge towards either
0 or 1, i.e., at convergence h (Vi,j) 2 {0, 1}.

We employ a rectified sigmoid as h (Vi,j), proposed in
(Louizos et al., 2018). The rectified sigmoid is defined as

h (Vi,j) = clip(� (Vi,j) (⇣ � �) + �), 0, 1), (23)

where �(·) is the sigmoid function and, ⇣ and � are stretch
parameters, fixed to 1.1 and �0.1, respectively. The rec-
tified sigmoid has non-vanishing gradients as h (Vi,j) ap-
proaches 0 or 1, which helps the learning process when we
encourage h (Vi,j) to move to the extremities. For regular-
ization we use

freg (V) =
X

i,j

1� |2h (Vi,j)� 1|� , (24)

where we anneal the parameter �. This allows most of the
h (Vi,j) to adapt freely in the initial phase (higher �) to

round down learned value between [0,1]+

Regularizer forces V to be 0 or 1

45

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Adaptive Rounding for Post-Training Quantization

Optimization #bits W/A Resnet18 Resnet50 InceptionV3 MobilenetV2

Full precision 32/32 69.68 76.07 77.40 71.72
DFQ (Nagel et al., 2019) 8/8 69.7 - - 71.2

Nearest 4/32 23.99 35.60 1.67 8.09
OMSE+opt(Choukroun et al., 2019) 4⇤/32 67.12 74.67 75.45 -
OCS (Zhao et al., 2019) 4/32 - 66.2 4.8 -
AdaRound 4/32 68.71±0.06 75.23±0.04 75.76±0.09 69.78±0.05

†

DFQ (our impl.) 4/8 38.98 52.84 - 46.57
Bias corr (Banner et al., 2019) 4⇤/8 67.4 74.8 59.5 -
AdaRound w/ act quant 4/8 68.55±0.01 75.01±0.05 75.72±0.09 69.25±0.06

†

Table 7. Comparison among different post-training quantization strategies in the literature. We report results for various models in terms
of ImageNet validation accuracy (%). *Uses per channel quantization. †Using CLE (Nagel et al., 2019) as preprocessing.

Figure 4. The effect on ImageNet validation accuracy when using
different number of images belonging to different datasets for
AdaRound optimization.

on the more challenging networks, InceptionV3 and Mo-
bilenetV2, AdaRound stays within 2% of the original accu-
racy and outperforms any competing method.

To be able to compare to methods that also do activation
quantization, we report results of AdaRound with all ac-
tivation tensors quantized to 8 bits. For this scenario, we
quantized the activations to 8 bits and set the scaling factor
for the activation quantizers based on the minimum and
maximum activations observed. We notice that activation
quantization, in most cases, does not significantly harm the
validation accuracy. AdaRound again outperforms the com-
peting methods such as DFQ (Nagel et al., 2019) and bias
correction (Banner et al., 2019).

Semantic segmentation To demonstrate the wider appli-
cability of AdaRound, we apply it to DeeplabV3+ (Chen
et al., 2018) evaluated on Pascal VOC (Everingham et al.,
2015). Since the input images here are significantly big-
ger, we only use 512 images to optimize AdaRound. All
other aspects of the experimental setup stay the same. To
the best of our knowledge, there are no other post-training

Optimization #bits W/A mIOU

Full precision 32/32 72.94
DFQ (Nagel et al., 2019) 8/8 72.33
Nearest 4/8 6.09
DFQ (our impl.) 4/8 14.45

AdaRound 4/32 70.89±0.33
AdaRound w/ act quant 4/8 70.86±0.37

Table 8. Comparison among different post-training quantization
strategies, in terms of Mean Intersection Over Union (mIOU) for
DeeplabV3+ (MobileNetV2 backend) on Pascal VOC.

quantization methods doing 4-bit quantization for semantic
segmentation. DFQ works well for 8 bits, however perfor-
mance drastically drops when going down to 4-bit weight
quantization. AdaRound still performs well for 4 bits and
has only a 2% performance decrease for 4-bit weights and
8-bit activations quantization.

6. Conclusion

In this paper we proposed AdaRound, a new rounding
method for post-training quantization of neural network
weights. AdaRound improves significantly over rounding-
to-nearest, which has poor performance for lower bit widths.
We framed and analyzed the rounding problem theoreti-
cally and by making appropriate approximations we arrive
at a practical method. AdaRound is computationally fast,
uses only a small number of unlabeled data examples, does
not need end-to-end fine-tuning, and can be applied to any
neural network that has convolutional or fully-connected
layers without any restriction. AdaRound establishes a new
state-of-the-art for post-training weight quantization with
significant gains. It can push networks like Resnet18 and
Resnet50 to 4-bit weights while keeping the accuracy drop
within 1%.

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Adaptive Rounding for Post-Training Quantization

Optimization #bits W/A Resnet18 Resnet50 InceptionV3 MobilenetV2

Full precision 32/32 69.68 76.07 77.40 71.72
DFQ (Nagel et al., 2019) 8/8 69.7 - - 71.2

Nearest 4/32 23.99 35.60 1.67 8.09
OMSE+opt(Choukroun et al., 2019) 4⇤/32 67.12 74.67 75.45 -
OCS (Zhao et al., 2019) 4/32 - 66.2 4.8 -
AdaRound 4/32 68.71±0.06 75.23±0.04 75.76±0.09 69.78±0.05

†

DFQ (our impl.) 4/8 38.98 52.84 - 46.57
Bias corr (Banner et al., 2019) 4⇤/8 67.4 74.8 59.5 -
AdaRound w/ act quant 4/8 68.55±0.01 75.01±0.05 75.72±0.09 69.25±0.06

†

Table 7. Comparison among different post-training quantization strategies in the literature. We report results for various models in terms
of ImageNet validation accuracy (%). *Uses per channel quantization. †Using CLE (Nagel et al., 2019) as preprocessing.

Figure 4. The effect on ImageNet validation accuracy when using
different number of images belonging to different datasets for
AdaRound optimization.

on the more challenging networks, InceptionV3 and Mo-
bilenetV2, AdaRound stays within 2% of the original accu-
racy and outperforms any competing method.

To be able to compare to methods that also do activation
quantization, we report results of AdaRound with all ac-
tivation tensors quantized to 8 bits. For this scenario, we
quantized the activations to 8 bits and set the scaling factor
for the activation quantizers based on the minimum and
maximum activations observed. We notice that activation
quantization, in most cases, does not significantly harm the
validation accuracy. AdaRound again outperforms the com-
peting methods such as DFQ (Nagel et al., 2019) and bias
correction (Banner et al., 2019).

Semantic segmentation To demonstrate the wider appli-
cability of AdaRound, we apply it to DeeplabV3+ (Chen
et al., 2018) evaluated on Pascal VOC (Everingham et al.,
2015). Since the input images here are significantly big-
ger, we only use 512 images to optimize AdaRound. All
other aspects of the experimental setup stay the same. To
the best of our knowledge, there are no other post-training

Optimization #bits W/A mIOU

Full precision 32/32 72.94
DFQ (Nagel et al., 2019) 8/8 72.33
Nearest 4/8 6.09
DFQ (our impl.) 4/8 14.45

AdaRound 4/32 70.89±0.33
AdaRound w/ act quant 4/8 70.86±0.37

Table 8. Comparison among different post-training quantization
strategies, in terms of Mean Intersection Over Union (mIOU) for
DeeplabV3+ (MobileNetV2 backend) on Pascal VOC.

quantization methods doing 4-bit quantization for semantic
segmentation. DFQ works well for 8 bits, however perfor-
mance drastically drops when going down to 4-bit weight
quantization. AdaRound still performs well for 4 bits and
has only a 2% performance decrease for 4-bit weights and
8-bit activations quantization.

6. Conclusion

In this paper we proposed AdaRound, a new rounding
method for post-training quantization of neural network
weights. AdaRound improves significantly over rounding-
to-nearest, which has poor performance for lower bit widths.
We framed and analyzed the rounding problem theoreti-
cally and by making appropriate approximations we arrive
at a practical method. AdaRound is computationally fast,
uses only a small number of unlabeled data examples, does
not need end-to-end fine-tuning, and can be applied to any
neural network that has convolutional or fully-connected
layers without any restriction. AdaRound establishes a new
state-of-the-art for post-training weight quantization with
significant gains. It can push networks like Resnet18 and
Resnet50 to 4-bit weights while keeping the accuracy drop
within 1%.

Comparison to literature
Setting a new SOTA for 4-bit post-training weight quantization

46

github.com/quic/aimet

github.com/quic/aimet-model-zoo

Tools are open-sourced
through AIMET

AIMET Model Zoo is a product of Qualcomm Innovation Center, Inc.

4747

Join our open-source projects

AIMET
State-of-the-art quantization and compression techniques

github.com/quic/aimet

AIMET Model Zoo
Accurate pre-trained 8-bit quantized models

github.com/quic/aimet-model-zoo

49
*: Comparison between FP32 model and INT8 model quantized with AIMET.
For further details, check out: https://github.com/quic/aimet-model-zoo/

ResNet-50
(v1)

Top-1 accuracy*

FP32 INT8

75.21% 74.96%

MobileNet-
v2-1.4

Top-1 accuracy*

FP32 INT8

75% 74.21%

EfficientNet
Lite

Top-1 accuracy*

FP32 INT8

74.93% 74.99%

SSD
MobileNet-v2

mAP*

FP32 INT8
0.2469 0.2456

RetinaNet

mAP*

FP32 INT8
0.35 0.349

Pose
estimation

mAP*

FP32 INT8
0.383 0.379

SRGAN

PSNR*

FP32 INT8
25.45 24.78

MobileNetV2

Top-1 accuracy*

FP32 INT8

7167% 71.14%

EfficientNet-
lite0

Top-1 accuracy*

FP32 INT8

75.42% 74.44%

DeepLabV3+

mIoU*

FP32 INT8

72.62% 72.22%

MobileNetV2-
SSD-Lite

mAP*

FP32 INT8
68.7% 68.6%

Pose
estimation

mAP*

FP32 INT8
0.364 0.359

SRGAN

PSNR

FP32 INT8
25.51 25.5

DeepSpeech2

WER*

FP32 INT8
9.92% 10.22%

AIMET Model Zoo includes popular quantized AI models
Accuracy is maintained for INT8 models — less than 1% loss*

49

<1%
Loss in

accuracy*

Tensorflow Pytorch

50

What’s next in efficient
on-device AI

51

Ultimately limited gains from NAS, compression, uniform quantization
Current tools optimize existing architectures, leading to 1-3x gains over standard networks on device

Im
ag

eN
et

 T
op

-1
 v

al
ac

cu
ra

cy
 [%

]

FPS

Mobile SoC throughput1
(Adreno 660 GPU)

224x224 images

3x
Faster than
ResNet50

2x
Less MAC’s

than ResNet50

8-bit Integer

4-bit Integer

up to

16X

up to

64X

NAS Compression

1 Qualcomm Adreno 660 GPU in the Snapdragon 888 running on the Samsung Galaxy S21
[2]Andrey Kuzmin, et al, “Taxonomy and Evaluation of Structured Compression of Convolutional Neural Networks”, Arxiv 2019

[2]

4-8b established

52

T
as

k
Q

ua
lit

y

Throughput

Baseline Models

8bit Baseline
Pareto Front

HW-Aware 8bit NAS,
Compressed Pareto Front

1.2-3x What’s next?

What’s next in efficient AI models?

53

Mixed-Precision
Quantized NAS

54

Mixed Precision outperforms uniform quantization

Mart Van Baalen, et ak “Bayesian Bits: Unifying Quantization and Pruning”, Neurips 2020

Bayesian Bits: Neural Networks can be optimized for mixed-precision.

During training, the network automatically finds the optimal
trade-off between network complexity and accuracy

The result: Some layers are fine with 8 bits, while
others are fine with 2 bits. And some layers are

pruned (green)

55

Many Ways to gain from mixed-precision

Bert Moons, et al, “Envision: a 0.26-to-10 TOPS/W Subword-Parallel Dynamic-Voltage-Accuracy-Frequency-Scalable Convolutional Neural Network Processor in 28nm FDSOI”, ISSCC2017

• DVAFS: DVAS + subword parallelism op/J 10x @ 2b vs 8b

An academic system level example

56

Mixed Precision Quantized NAS

Tianzhe Wang, et al, “”APQ: Joint Search for Network Architecture, Pruning and Quantization Policy”, CVPR2020

APQ*

• APQ builds on top of OFA

• +/- 1%, or 2.2x BOPS gains
expected through joint NAS
and Quantization

57

T
as

k
Q

ua
lti

ry
or

 A
cc

ur
ac

y

Throughput

8bit Baseline
Pareto Front

8bit NAS,
Compressed

1.2-3x 1-2x

<8bit mixed-
precision NAS

What’s next in efficient AI models?

58

Conditional networks

59

Conditional computing as a complementary technique to NAS
Input-dependent network architectures spend less time on easier samples

Classification: some samples are easier than others

Copyright Pixel Addict and Doyle (CC BY-ND 2.0), no changes made
found through Huang, G, et al, ”Multi-Scale Dense Networks for Resource Efficient Image Classification”, ICLR2018

60

Conditional computing as a complementary technique to NAS
Input-dependent network architectures spend less time on easier samples

Huang, G, et al, ”Multi-Scale Dense Networks for Resource Efficient Image Classification”, ICLR2018

Early exiting, some samples are easier than others

Early exit 1 Early exit 2 Early exit 3

62

Conditional computing as a complementary technique to NAS
Input-dependent network architectures spend less time on easier samples

Segmentation: backgrounds are
abundant and easy to recognize

Detection: Objects of interest are
relatively rare

62

63

Conditional computing as a complementary technique to NAS
Input-dependent network architectures spend less time on easier samples

Dynamic Convolutions: exploiting spatial sparsity

Thomas Verelst, et al, “Dynamic Convolutions: Exploiting
spatial sparsity for faster inference”, CVPR20

>20%
Less MACs at

similar accuracy

64

Conditional computing as a complementary technique to NAS
Input-dependent network architectures spend less time on easier samples

Frame 1

Video: Subsequent frames are correlated

Frame 2

Artur Andrzej, https://commons.wikimedia.org/wiki/File:Gdańsk_skrzyżowanie_ulic_Grunwaldzkiej_i_Słowackiego.jpg
(Creative Commons CC0 1.0 Universal Public Domain Dedication), no changes made

https://commons.wikimedia.org/wiki/File:Gda%C5%84sk_skrzy%C5%BCowanie_ulic_Grunwaldzkiej_i_S%C5%82owackiego.jpg

65

Conditional computing as a complementary technique to NAS
Input-dependent network architectures spend less time on easier samples

Temporal Skip-Convolutions in video segmentation/detection

Amirhossein Habibian, et al, “Skip-Convolutions for Efficient Video Processing”, CVPR21

2-4x
Less MACs at

similar
precision

66

Conditional computing as a complementary technique to NAS
Input-dependent network architectures spend less time on easier samples

Conditional Early exiting in video/action recognition

Amir Ghodrati, et al, “FrameExit: Conditional Early Exiting for efficient Video Recognition”, CVPR21

67

T
as

k
Q

ua
lti

ry
or

 A
cc

ur
ac

y

Throughput

8bit Baseline
Pareto Front

8bit NAS,
Compressed

1.2-3x 1-2x

<8bit mixed-
precision NAS

1-2x

Conditional computing

What’s next in efficient AI models?

68

T
as

k
Q

ua
lti

ry
or

 A
cc

ur
ac

y

Throughput

8bit Baseline
Pareto Front

Diverse <8bit Mixed-Precision
NAS + Conditional computing

10x

What’s next in efficient AI models?

69

• Energy-Efficient machine learning and the
computational budget gap

• The Model-Efficiency Pipeline reduces the cost of
on-device inference

Qualcomm Innovation Center, Inc. open sources
through AI Model Efficiency Toolkit (AIMET)

•What’s next in energy-efficient AI

Overview

NAS Compression Quantization

71

www.qualcomm.com/ai

@QCOMResearch

www.qualcomm.com/news/onq

https://www.youtube.com/qualcomm?

http://www.slideshare.net/qualcommwirelessevolution

Connect with Us

Questions?

http://www.qualcomm.com/ai
https://www.twitter.com/qualcomm_tech
http://www.qualcomm.com/news/onq
https://www.youtube.com/qualcomm?
http://www.slideshare.net/qualcommwirelessevolution

Follow us on:

For more information, visit us at:

www.qualcomm.com & www.qualcomm.com/blog

Thank you

Nothing in these materials is an offer to sell any of the
components or devices referenced herein.

©2018-2021 Qualcomm Technologies, Inc. and/or its
affiliated companies. All Rights Reserved.

Qualcomm, Snapdragon, Adreno, and Hexagon are
trademarks or registered trademark of Qualcomm

Incorporated. Other products and brand names may be
trademarks or registered trademarks of their respective
owners.

References in this presentation to “Qualcomm” may mean Qualcomm
Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries
or business units within the Qualcomm corporate structure, as
applicable. Qualcomm Incorporated includes our licensing business,
QTL, and the vast majority of our patent portfolio. Qualcomm
Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates,

along with its subsidiaries, substantially all of our engineering,
research and development functions, and substantially all of our
products and services businesses, including our QCT semiconductor
business.

Premier Sponsor

Automated TinyML

Zero-сode SaaS solution

Create tiny models, ready for embedding,
in just a few clicks!

Compare the benchmarks of our compact
models to those of TensorFlow and other leading
neural network frameworks.

Build Fast. Build Once. Never Compromise.

Executive Sponsors

5 © 2020 Arm Limited (or its affiliates)5 © 2020 Arm Limited (or its affiliates)

Optimized models for embedded

Application

Runtime
(e.g. TensorFlow Lite Micro)

Optimized low-level NN libraries
(i.e. CMSIS-NN)

Arm Cortex-M CPUs and microNPUs

Profiling and
debugging

tooling such as
Arm Keil MDK

Connect to
high-level

frameworks

1

Supported by
end-to-end tooling

2

2

RTOS such as Mbed OS

Connect to
Runtime

3

3

Arm: The Software and Hardware Foundation for tinyML
1

AI Ecosystem
Partners

Resources: developer.arm.com/solutions/machine-learning-on-arm

Stay Connected

@ArmSoftwareDevelopers

@ArmSoftwareDev

TinyML for all developers

www.edgeimpulse.com

Test

Edge Device Impulse

Dataset

Embedded and
edge compute

deployment
options

Acquire valuable
training data

securely

Test impulse
with real-time
device data
flows

Enrich data and
train ML
algorithms

Real sensors in real
time

Open source SDK

Automotive

IoT/IIoT

Mobile

Cloud

Power efficiency Efficient learningPersonalization

Action
Reinforcement learning
for decision making

Perception
 Object detection, speech
recognition, contextual fusion

Reasoning
Scene understanding, language
understanding, behavior prediction

Advancing AI
research to make

efficient AI ubiquitous

A platform to scale AI
across the industry

Edge cloud

Model design,
compression, quantization,

algorithms, efficient
hardware, software tool

Continuous learning,
contextual, always-on,

privacy-preserved,
distributed learning

Robust learning
through minimal data,
unsupervised learning,

on-device learning

Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.

Syntiant Corp. is moving artificial intelligence and machine learning from the cloud to edge
devices. Syntiant’s chip solutions merge deep learning with semiconductor design to produce
ultra-low-power, high performance, deep neural network processors. These network processors
enable always-on applications in battery-powered devices, such as smartphones, smart speakers,
earbuds, hearing aids, and laptops. Syntiant's Neural Decision ProcessorsTM offer wake word,
command word, and event detection in a chip for always-on voice and sensor applications.

Founded in 2017 and headquartered in Irvine, California, the company is backed by Amazon,
Applied Materials, Atlantic Bridge Capital, Bosch, Intel Capital, Microsoft, Motorola, and others.
Syntiant was recently named a CES® 2021 Best of Innovation Awards Honoree, shipped over 10M
units worldwide, and unveiled the NDP120 part of the NDP10x family of inference engines for
low-power applications.

www.syntiant.com @Syntiantcorp

Platinum Sponsors

10

www.infineon.com

Gold Sponsors

Adaptive AI for the Intelligent Edge

Latentai.com

sensiml.com

Build Smart IoT Sensor
Devices From Data
SensiML pioneered TinyML software
tools that auto generate AI code for the
intelligent edge.

• End-to-end AI workflow
• Multi-user auto-labeling of time-series data
• Code transparency and customization at each

step in the pipeline

We enable the creation of production-
grade smart sensor devices.

Silver Sponsors

Copyright Notice
The presentation(s) in this publication comprise the proceedings of tinyML® EMEA Technical Forum
2021. The content reflects the opinion of the authors and their respective companies. This version of the
presentation may differ from the version that was presented at tinyML EMEA. The inclusion of
presentations in this publication does not constitute an endorsement by tinyML Foundation or the
sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of
the authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyML.org

