ECG Analyzer powered by EDGE IMPULSE

Author: Manivannan Sivan

- Atrial Fibrillation
- First Degree Heart block
- Normal
Increase in Fatality due to heart problems

- Rural areas without healthcare facilities
- Lack of awareness about cardiac arrest symptoms leads to fatality
- Increase in heart disease cases
Present ECG Analyzer machines in market and its features

- Present IoT Medical device sends bulk ECG data to the mobile/server and analysis is done in high processor / mobile App
- Computer based application which receives signals from ECG device and analyze the ECG patterns
- All the ECG analyzing device has dependency on Internet or high processing computers/ Mobile application.
Technology contribution

- ECG Analyzer powered by Edge Impulse will analyze the ECG data without any dependency on the Internet.
- Latency is lowest compared to IoT devices
- A 15Kb Rom - ECG Analyzing TinyML model can run on any TinyML supported microcontrollers.
- The device will analyze ECG patterns and classify into Normal, Atrial Fibrillation and First-Degree heart block
Architecture

Simulation

Matlab Signal builder

Normal ECG

Analog

Arduino Nano 33 Ble

Serial monitor

Datasets

Different ECG Data patterns

1st degree heart block

IRREGULARLY IRREGULAR (ATRIAL FIBRILLATION)

Normal ECG

ML Training

Datasets

ECG Analyzer

AD8232

Simulation

Datasets

Analog

Arduino Nano 33 Ble

Serial monitor

Datasets

Different ECG Data patterns

1st degree heart block

IRREGULARLY IRREGULAR (ATRIAL FIBRILLATION)

Normal ECG

ML Training

Datasets

ECG Analyzer
ECG Wave

- P Segment
- PR Interval
- QRS Complex
- ST Segment
- QT Interval
Complications

- If a clot breaks off, enters the bloodstream and enters into the brain, it will cause stroke. About 15–20 percent of people who have strokes have this heart arrhythmia.
- Heart failure – Heart loses the capacity to pump the required amount of blood
Complications

• First-degree AV block may be at an increased risk of Atrial fibrillation Heart failure
Simulating different ECG patterns using Matlab signal builder
Editing the ECG signals
Matlab Signal builder

ECGAnalyzer.c

Modified ECG signal data

Export using m script

Copy, Paste the data buffer

ECGAnalyzer.c
Challenge in Improving Prediction Accuracy

Normal

Atrial Fibrillation

AV Block1
Converting human observations into a new signal

When a doctor or trained person try to analyze the ECG graph, they will be counting the small boxes between R to R wave, P to R interval and write it down the counts in the graph or memories it for calculation.
<table>
<thead>
<tr>
<th>Condition</th>
<th>Human Observation</th>
<th>ECG Analyzer datasets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>observes boxes in graph and find no deviations</td>
<td>R-R Interval value: 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PR Interval value: 50</td>
</tr>
<tr>
<td>Atrial Fibrillation</td>
<td>Observation: Boxes count in graph varies between two R R intervals</td>
<td>R-R Interval value: -100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PR Interval value: 50</td>
</tr>
<tr>
<td>First-Degree Heart Block</td>
<td>Observation: Boxes count in graph between P to R indicates >200ms</td>
<td>R-R Interval value: 100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PR Interval value: -50</td>
</tr>
</tbody>
</table>
Normal ECG

No drop in R-R Interval

No drop in PR Interval

Atrial Fibrillation

Drop in R-R Interval
First-Degree Heart Block
Training Datasets

- Classes: 3 (Atrial Fibrillation, First-Degree Heart Block, Normal)
- Window length: 3000 ms.
- Window increase: 2999 ms.
- Training windows: 137

Feature explorer (137 samples)
Outcome
Library Portability

ECG Sensor → Any Microcontrollers + ECGAnalyzer lib → ECG Datasets → ECG Analyzer
1 Minute 30 seconds Demo session
Premier Sponsor
Automated TinyML

Zero-code SaaS solution

Create tiny models, ready for embedding, in just a few clicks!

Compare the benchmarks of our compact models to those of TensorFlow and other leading neural network frameworks.

Executive Sponsors
Optimized models for embedded
Optimized low-level NN libraries
(i.e. CMSIS-NN)
RTOS such as Mbed OS
Arm Cortex-M CPUs and microNPUs

Application
Optimized models for embedded
(e.g. TensorFlow Lite Micro)
Runtime

Connect to high-level frameworks
Supported by end-to-end tooling
Connect to Runtime

Stay Connected
@ArmSoftwareDevelopers
@ArmSoftwareDev

Resources: developer.arm.com/solutions/machine-learning-on-arm
TinyML for all developers

- **C++ library**
- **Arduino library**
- **WebAssembly**

Dataset
- Acquire valuable training data securely
- Enrich data and train ML algorithms

Edge Device
- Real sensors in real time
- Open source SDK
- Embedded and edge compute deployment options

Impulse
- Test impulse with real-time device data flows

Test
- Acquire valuable training data securely
- Enrich data and train ML algorithms

www.edgeimpulse.com
Advancing AI research to make efficient AI ubiquitous

Power efficiency
- Model design, compression, quantization, algorithms, efficient hardware, software tool

Personalization
- Continuous learning, contextual, always-on, privacy-preserved, distributed learning

Efficient learning
- Robust learning through minimal data, unsupervised learning, on-device learning

Perception
- Object detection, speech recognition, contextual fusion

Reasoning
- Scene understanding, language understanding, behavior prediction

Action
- Reinforcement learning for decision making

A platform to scale AI across the industry
Syntiant Corp. is moving artificial intelligence and machine learning from the cloud to edge devices. Syntiant’s chip solutions merge deep learning with semiconductor design to produce ultra-low-power, high performance, deep neural network processors. These network processors enable always-on applications in battery-powered devices, such as smartphones, smart speakers, earbuds, hearing aids, and laptops. Syntiant's Neural Decision Processors™ offer wake word, command word, and event detection in a chip for always-on voice and sensor applications.

Founded in 2017 and headquartered in Irvine, California, the company is backed by Amazon, Applied Materials, Atlantic Bridge Capital, Bosch, Intel Capital, Microsoft, Motorola, and others. Syntiant was recently named a CES® 2021 Best of Innovation Awards Honoree, shipped over 10M units worldwide, and unveiled the NDP120 part of the NDP10x family of inference engines for low-power applications.

www.syntiant.com
Platinum Sponsors
Part of your life. Part of tomorrow.

www.infineon.com
Reality AI

Add Advanced Sensing to your Product with Edge AI / TinyML

- Pre-built Edge AI sensing modules, plus tools to build your own

Reality AI solutions
- Pre-built sound recognition models for indoor and outdoor use cases
- Solution for industrial anomaly detection
- Pre-built automotive solution that lets cars "see with sound"

Reality AI Tools® software
- Build prototypes, then turn them into real products
- Explain ML models and relate the function to the physics
- Optimize the hardware, including sensor selection and placement

https://reality.ai info@reality.ai @SensorAI Reality AI
Gold Sponsors
Build Smart IoT Sensor Devices From Data

SensiML pioneered TinyML software tools that auto generate AI code for the intelligent edge.

- End-to-end AI workflow
- Multi-user auto-labeling of time-series data
- Code transparency and customization at each step in the pipeline

We enable the creation of production-grade smart sensor devices.
Silver Sponsors
Copyright Notice

The presentation(s) in this publication comprise the proceedings of tinyML® EMEA Technical Forum 2021. The content reflects the opinion of the authors and their respective companies. This version of the presentation may differ from the version that was presented at tinyML EMEA. The inclusion of presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyML.org