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Human 

Neuromorphic Engineering – Why?

2[Silver & Hassabis, https://deepmind.com/blog/article/alphago-zero-starting-scratch, 2017]
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Neuromorphic Engineering – Why?

[Poon & Zhou, Front. Neurosci., 2011]
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Moore’s law?

Data representation: 
sparse, event-driven spike trains

Architecture: distributed

processing with co-located
neurons and synapses

3

Silicon neuron
Po

w
er

 c
o

n
su

m
p

ti
o

n
 a

t 
1

0
0

H
z 

 [
J/

sp
ik

e]

Frenkel, tinyML EMEA’21 keynote



Neuromorphic Engineering – How?

[Poon & Zhou, Front. Neurosci., 2011]
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A design strategy toward efficiency and cognition?
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NeuroGrid
(Stanford)

Subthreshold analog (mixed-signal)

ROLLS
(UZH/ETHZ)

DYNAPs
(UZH/ETHZ)

Biological-time brain emulation
and basic research

Software

CPU / GPU

Large-scale full-custom digital designs

TrueNorth (IBM) Loihi (Intel)

Low-cost simulation: 
neuromorphic (slow),
neural networks (fast)

Cognitive computing
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Neuromorphic Engineering – How?
A design strategy toward efficiency and cognition?

Dedicated/distributed sim.

FPGA SpiNNaker 1/2
(Manchester, TUD)

ODIN (UCLouvain) MorphIC (UCLouvain)

Small-scale full-custom digital designs

331µm

951µm

SPOON
28-nm eCNN
(0.32mm²)

SPOON (UCLouvain)

See also:
[Seo, CICC’11]
[Knag, JSSC’15]
[Park, ISSCC’19]

Simulation acceleration 
for neuroscience

and neural networks

Bio-inspired edge computing
(experimentation platforms)

Low-cost adaptive edge computing 
(dedicated accelerators)

Above-threshold analog (mixed-signal)

BrainScaleS 1/2 (Heidelberg)

Neuroscience
simulation acceleration
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Neuromorphic Engineering – How?

Neuromorphic processors

Neuroscience observation

Real-world
application

Neuroscience
application

?

Bottom-up
design

(exp. platforms)

Top-down
design

(accelerators)

Unveiling roads to embedded cognition

Neuron & synapse
building blocks

Large-scale
silicon integration

Silicon
integration

Algorithms

Versatility / efficiency
tradeoff

Accuracy / efficiency
tradeoff

Efficiency
Cognition
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Part I – Bottom-up neuromorphic design

• Building blocks 

• Integration

Part II – Top-down neuromorphic design

• Algorithms

• Integration

Conclusion and perspectives

Outline
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Part I – Bottom-up neuromorphic design

• Building blocks 

• Integration

Part II – Top-down neuromorphic design

• Algorithms

• Integration

Conclusion and perspectives

Outline

Neurons and synapses as adaptive processing and memory elements

[Frenkel, ISCAS, 2017]
[Frenkel, BioCAS, 2017]
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High
Low potential

Bug or feature?

How can we make the best of both worlds?

Analog Digital

Design time
Technology scaling

Noise, mismatch, PVT

Biophysical versatility
Area

Good

Design strategy
Analog or digital?

emulation simulation

Biophysical behavior

Low
High potential
Low sensitivity

Bad

phenomenological 
modeling

9

We’ll come back 
to this. ☺
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Design strategy
What should we aim for and phenomenologically implement?

Neurons

• 20 Izhikevich behaviors of cortical spiking neurons

Synapses

• Spike-based online learning

10

Introduce competition for 
unsupervised learning in 
winner-take-all networks 

[Kreiser, BioCAS’17]

Useful for time-to-first-spike 
encodings

Stereo sound source 
localization 

[Schoepe, BioCAS’19]

Discrimination of specific 
frequencies

[Izhikevich, IEEE Trans. NN, 2004]Frenkel, tinyML EMEA’21 keynote



Proposed phenomenological digital neuron
Tackling the versatility/efficiency tradeoff
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Park, 2014
(90nm)

Molin, 2017 
(0.5mm)

Sourikopoulos, 2017
(65nm)

13

Aamir, 2018
(65nm)

11

Time-multiplexed
version

Key features:

- Entirely event-driven
(no time-stepped integration)

- Only 4 functions necessary:

▪ Threshold adaptation

▪ Time window generation

▪ Simple template matching

▪ Membrane potential
sign rotation

Rubino, 2021
(22nm)
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Design strategy
What should we aim for and phenomenologically implement?

Neurons

• 20 Izhikevich behaviors of cortical spiking neurons

Synapses

• Spike-based online learning

12

→ perspectives
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Proposed digital synapse
Tackling the versatility/efficiency tradeoff

STDP SDSP

Key challenge – Fan-in = 100-10000 synapses/neuron

13

Custom 
dual-port

SRAM

[Seo, CICC’11]

Foundry 
single-port

SRAM

Record 
density

[Cassidy,
ISCAS’11]
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Part I – Bottom-up neuromorphic design

• Building blocks 

• Integration

Part II – Top-down neuromorphic design

• Algorithms

• Integration

Conclusion and perspectives

Outline

Proposed neuromorphic experimentation platforms

[Frenkel, Trans. BioCAS, 2019a]
[Frenkel, Trans. BioCAS, 2019b]
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ODIN – A 256-neuron 64k-synapse Online-learning Digital Neurosynaptic core
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SNN

256²-synapse
memory

(32kB SRAM)

256-neuron 
memory

(4kB SRAM)
A

ER
 IN

P
U

T

A
ER

 O
U

TP
U

T
(e

ve
n

ts
 +

 m
o

n
it

o
ri

n
g)

Controller

SPI 
slave

8

REQ

ACK

ADDR

MISO
MOSI

SCK

17

REQ

ACK

ADDR

CLK_EXTRST

Event scheduler

LIF
update logic

Phenom. 
Izhikevich 

update logic

SD
SP

 
u

p
d

at
e

lo
gi

c

SD
SP

u
p

/d
o

w
n

  
re

gi
st

e
rs

clock gen
(max. 100MHz)

Architecture of ODIN

15Frenkel, tinyML EMEA’21 keynote



ODIN – Chip microphotograph and specifications

Routing flexibility/efficiency  (AER)
Fan-in
Fan-out

256
256
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Chip-level architecture Core architecture

Neurons/core          512
Synapses/core        528k

Architecture of MorphIC

Fan-in    1k
Fan-out    2k

Stochastic SDSP (S-SDSP) 
on binary synapses
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MorphIC – Chip microphotograph and specifications
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DigitalMixed-signal

Most direct comparison: IBM TrueNorth core vs. ODIN (same technology node, 
same number of neurons and synapses per neurosynaptic core, same area).

Synapses
Neurons
Energy/SOP
Connectivity

ODIN
4-bit with learning

20 Izh. beh.
12.7pJ @0.55V

AER

TrueNorth
1-bit without learning

11 Izh. beh.
26pJ @0.775V

large-scale mesh

Comparison with SoA experimentation platforms

19
MorphIC
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Area
ODIN and MorphIC have the highest neuron and synapse densities 

among all SNNs with embedded synaptic weight storage

DigitalMixed-signal

Comparison with SoA experimentation platforms
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Power
ODIN has the lowest energy per synaptic event among all digital SNNs,

MorphIC keeps a competitive energy efficiency.
They outperform subthreshold analog SNNs in accelerated time,
but not for biological-time processing. 

Comparison with SoA experimentation platforms
DigitalMixed-signal
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Results on the spiking EMG/DVS sensor fusion benchmark
[Ceolini, Frenkel, Shrestha et al., Front. Neurosci., 2020]
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Results on the spiking EMG/DVS sensor fusion benchmark

ODIN+MorphIC 89.4%  /       37.4µJ

Loihi 96%     /   1105µJ

Software 95.4% / 32100µJ

Sensor fusion

[Ceolini, Frenkel, Shrestha et al., Front. Neurosci., 2020]

EMG data
on ODIN

DVS data 
on MorphIC

23

See the ODIN and MorphIC papers for more 
benchmarking, incl. online- and offline-trained MNIST.

→ perspectives

Neuromorphic designs are more 
efficient than GPUs, as would be 
expected from dedicated hardware.
But are they more efficient than 
conventional accelerators?

Accuracy / Energy  tradeoff
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Part I – Bottom-up neuromorphic design

• Building blocks 

• Integration

Part II – Top-down neuromorphic design

• Algorithms

• Integration

Conclusion and perspectives

Outline

Minimizing the training cost of neural networks for adaptive edge computing

[Frenkel & Lefebvre, Front. Neurosci., 2021]
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Learning without feedback
Releasing the weight transport and update locking of backprop

s

Computational and memory cost

[Lillicrap, Nat. Comms., 2016]    [Nokland, NeurIPS, 2016]

Feedforward
local training
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Direct Random Target Projection (DRTP)
Ideal use cases?

26

Neuroscience

DRTP could come in line with recent findings in cortical areas that 
reveal the existence of output-independent target signals in the 
dendritic instructive pathways of intermediate-layer neurons.

[Magee & Grienberger, 
Annual Review of 

Neuroscience, 2020]

Adaptive edge computing

▪ Very low power and area overheads can be expected
for an on-chip implementation.

▪ Datasets representative of the complexity associated to 
autonomous smart sensors: MNIST or CIFAR-10.

→We’ll verify these claims in silico.

Disclaimer: whether DRTP 
scales to ImageNET is probably 

not the right question. ☺
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Part I – Bottom-up neuromorphic design

• Building blocks 

• Integration

Part II – Top-down neuromorphic design

• Algorithms

• Integration

Conclusion and perspectives 

Outline

Neuromorphic accelerators
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Event-driven CNN
(eCNN)

Which bio-inspired elements?
Taking a step back with the top-down design strategy

Neuromorphic processors

Neuroscience observation

Real-world
application

Neuroscience
application

?

DRTP

?

Adaptive edge computing
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…

FC1

…

FC2
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Fully-connected
(frame-based + event-driven)

Output
label

DRTP-enabled!

fhid
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[S.C. Liu, 2014]

sparse

Computation is event-driven

time-based
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SPOON – A Spiking Online-Learning Convolutional Neuromorphic Processor

Architecture of SPOON
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331µm

951µm

SPOON
28-nm eCNN
(0.32mm²)

SPOON – Chip microphotograph and specifications

(pre-silicon numbers, not yet updated)

DRTP can be
implemented on-chip 

at a very low cost!

Benchmarking:  MNIST  and  N-MNIST

30

Stay tuned for the 
journal extension!

→ perspectives
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SPOON benchmarking
Against SoA spiking neural networks on MNIST

power opt.

31

BetterBetter
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SPOON benchmarking

power opt.

Only SPOON allows reaching the efficiency of ANN/CNN/BNN accelerators while 
enabling online learning with event-based sensors.

Against SoA spiking neural networks on MNIST

32

BetterBetter
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Part I – Bottom-up neuromorphic design

• Building blocks 

• Integration

Part II – Top-down neuromorphic design

• Algorithms

• Integration

Conclusion and perspectives

Outline

Summary of the key messages, next directions
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Neuromorphic Engineering – Key Claims

Neuromorphic processors

Real-world
application

Neuroscience
application

Bottom-up
design

(exp. platforms)

Top-down
design

(accelerators)

Unveiling roads to embedded cognition

Neuron & synapse
building blocks

Large-scale
silicon integration

Silicon
integration

Versatility / efficiency
tradeoff

Accuracy / efficiency
tradeoff

Efficiency
Cognition

2

1

3

4

34

Neuroscience observation

Algorithms

?
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Neuroscience observation

?

Neuromorphic processors

Real-world
application

Neuroscience
application

Bottom-up
design

(exp. platforms)

Top-down
design

(accelerators)

Unveiling roads to embedded cognition

Neuron & synapse
building blocks

Large-scale
silicon integration

Silicon
integration

Learning 
algorithm

Versatility / efficiency
tradeoff

Accuracy / efficiency
tradeoff

Efficiency
Cognition

2

1

3

4

Claim 1 

Hardware-aware neuroscience model design and selection 
allows reaching record neuron and synapse densities with low-

power operation for large-scale integration in silico.

Neuromorphic Engineering – Key Claims

35

?
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?

Neuroscience observation

Neuromorphic processors

Real-world
application

Neuroscience
application

Bottom-up
design

(exp. platforms)

Top-down
design

(accelerators)

Unveiling roads to embedded cognition

Neuron & synapse
building blocks

Large-scale
silicon integration

Silicon
integration

Versatility / efficiency
tradeoff

Accuracy / efficiency
tradeoff

Efficiency
Cognition

2

1
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Claim 2 

Combining event-driven and frame-based processing with 
weight-transport-free update-unlocked training supports

low-cost adaptive edge computing with spike-based sensors.

Neuromorphic Engineering – Key Claims

36

Algorithms

?

Frenkel, tinyML EMEA’21 keynote



Neuromorphic processors

Real-world
application

Neuroscience
application

Bottom-up
design

(exp. platforms)

Top-down
design

(accelerators)

Unveiling roads to embedded cognition

Neuron & synapse
building blocks

Large-scale
silicon integration

Silicon
integration

Versatility / efficiency
tradeoff

Accuracy / efficiency
tradeoff

Efficiency
Cognition

2

1

3

4

Claim 3 

Top-down guidance helps pushing bottom-up neuron and synapse integration 
beyond the purpose of neuroscience experimentation platforms, while bottom-up 

guidance supports top-down design toward brain reverse-engineering.

Neuromorphic Engineering – Key Claims

37

Neuroscience observation

Algorithms

?

?
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Perspectives

38

▪ Neuromorphic engineering and spiking neural networks:
“Can we make it work?”                                 “Will it bring a competitive advantage?” (not only against GPUs)
Need something better than MNIST            Audio (KWS) and bio-signal processing   (time, biological-time)

▪ Phenomenological digital design: pragmatic short-to-midterm approach.
Promising avenues: leveraging the variability of subthreshold analog design; fine-grained mixed-signal design.

▪ Bottom-up trend: dendrites

▪ Top-down trend: new wave of training algorithms mapping onto bio-plausible primitives

▪ Cognition: a case for neuromorphic robots?

[Davies, Nat. Mach. Intel., 2019]

Neuromorphic processors

Real-world
application

Neuroscience
application

Neuroscience observation

?

?

[Sacramento, NeurIPS’18]
[Payeur, bioRxiv, 2020]
[Bellec, Nat. Comms., 2020]

[Man & Damasio, Nat. Mach. Intel., 2019]
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Open-sourced!
github.com/ChFrenkel/ODIN

Open-sourced!
github.com/ChFrenkel/Direct

RandomTargetProjection

Just released!

ChFrenkel

[C. Frenkel et al., “A 0.086-mm² 12.7-pJ/SOP 64k-synapse 256-neuron
online-learning digital spiking neuromorphic processor in 28nm CMOS,”
IEEE Trans. BioCAS, 2019]
[C. Frenkel et al. “MorphIC: A 65-nm 738k-synapse/mm² quad-core binary-
weight digital neuromorphic processor with stochastic spike-driven online
learning,” IEEE Trans. BioCAS, 2019]
[C. Frenkel, M. Lefebvre et al., “Learning without feedback: Fixed random
learning signals allow for feedforward training of deep neural networks,”
Frontiers in Neuroscience, 2021]
[C. Frenkel et al., “A 28-nm convolutional neuromorphic processor enabling
online learning with spike-based retinas,” IEEE ISCAS, 2020]
[C. Frenkel, D. Bol and G. Indiveri, “Bottom-up and top-down neural
processing systems design: Neuromorphic intelligence as the convergence
of natural and artificial intelligence”, arXiv preprint arXiv:2106.01288, 2021]

Journal extension coming soon
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Questions?
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Automated TinyML

Zero-сode SaaS solution

Create tiny models, ready for embedding,
in just a few clicks!

Compare the benchmarks of our compact 
models to those of TensorFlow and other leading 
neural network frameworks.

Build Fast. Build Once. Never Compromise.
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Optimized models for embedded

Application

Runtime
(e.g. TensorFlow Lite Micro)

Optimized low-level NN libraries
(i.e. CMSIS-NN)

Arm Cortex-M CPUs and microNPUs

Profiling and 
debugging 

tooling such as 
Arm Keil MDK

Connect to 
high-level 

frameworks

1

Supported by
end-to-end tooling

2

2

RTOS such as Mbed OS

Connect to
Runtime

3

3

Arm: The Software and Hardware Foundation for tinyML
1

AI Ecosystem 
Partners

Resources: developer.arm.com/solutions/machine-learning-on-arm

Stay Connected

@ArmSoftwareDevelopers

@ArmSoftwareDev



TinyML for all developers

www.edgeimpulse.com

Test

Edge Device Impulse

Dataset

Embedded and
edge compute 

deployment 
options

Acquire valuable 
training data 

securely

Test impulse 
with real-time 
device data 
flows

Enrich data and 
train ML 
algorithms

Real sensors in real 
time

Open source SDK



Automotive

IoT/IIoT

Mobile

Cloud

Power efficiency Efficient learningPersonalization

Action
Reinforcement learning 
for decision making

Perception
 Object detection, speech 
recognition, contextual fusion

Reasoning
Scene understanding, language 
understanding, behavior prediction

Advancing AI 
research to make 

efficient AI ubiquitous

A platform to scale AI 
across the industry

Edge cloud

Model design, 
compression, quantization, 

algorithms, efficient 
hardware, software tool

Continuous learning, 
contextual, always-on, 

privacy-preserved, 
distributed learning

Robust learning 
through minimal data, 
unsupervised learning, 

on-device learning

Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.



Syntiant Corp. is moving artificial intelligence and machine learning from the cloud to edge 
devices. Syntiant’s chip solutions merge deep learning with semiconductor design to produce 
ultra-low-power, high performance, deep neural network processors. These network processors 
enable always-on applications in battery-powered devices, such as smartphones, smart speakers, 
earbuds, hearing aids, and laptops. Syntiant's Neural Decision ProcessorsTM offer wake word, 
command word, and event detection in a chip for always-on voice and sensor applications.

Founded in 2017 and headquartered in Irvine, California, the company is backed by Amazon, 
Applied Materials, Atlantic Bridge Capital, Bosch, Intel Capital, Microsoft, Motorola, and others. 
Syntiant was recently named a CES® 2021 Best of Innovation Awards Honoree, shipped over 10M 
units worldwide, and unveiled the NDP120 part of the NDP10x family of inference engines for 
low-power applications. 

www.syntiant.com @Syntiantcorp 
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Adaptive AI for the Intelligent Edge

Latentai.com



sensiml.com

Build Smart IoT Sensor 
Devices From Data
SensiML pioneered TinyML software 
tools that auto generate AI code for the 
intelligent edge. 

• End-to-end AI workflow
• Multi-user auto-labeling of time-series data
• Code transparency and customization at each 

step in the pipeline

We enable the creation of production-
grade smart sensor devices.
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