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Processing temporal data on the edge
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� Temporal data is very prevalent in edge applications
� Audio (speech recognition)
� Biomedical signals (EEG, ECG)
� Video (gesture recognition)

� Edge resources are scarce
� Battery powered: ~mWs vs. MFLOPS
� Small memory: 100s KBs vs. Mparams

� Processing time-series data is complex 
� Additional dimension
� Capture temporal dependencies
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CUTIE – Ternary NN accelerator
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What is the SoA for energy-efficient processing on the edge?
� Ternary quantization
� Encodes 3 values {-1, 0, 1}
� Achieves reasonable accuracy for some applications
� Better than binary accuracy
� Higher efficiency due to sparsity

� CUTIE – Completely Unrolled Ternary Inference Engine[1]
� Hardware accelerator for ternary CNNs
� Peak energy efficiency: 3.1 [7nm] resp. 0.6 [22nm] POp/s/W @ 0.65V
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CNN TCN FC

Time-series processing on the edge
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� Steps required for time-series processing
� Feature extraction to generate embeddings from frames (i.e. CNN)
� Capturing temporal dependencies (i.e. RNN)
� Classify output (i.e. FC)
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Contribution – Ternary TCNs
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How can we bring time-series data processing to the edge?
� Temporal Convolutional Neural Networks (TCNs)
� Causal 1D Convolution
� Flexible receptive field
� High parallelism and low memory requirements
� Competitive accuracy w.r.t. RNNs

� Contributions
� Ternarization of TCNs 
� Mapping of 1D TCN layers to 2D CNN layers
� Reuse existing hardware of CUTIE
� Leverage high parallelism of CNN layers
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TNN-Accelerator - CUTIE
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Completely Unrolled Ternary Inference Engine
� Minimize Data movement

� Local memory for weights and activations
� Maximize data reusability
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TNN-Accelerator - CUTIE
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Completely Unrolled Ternary Inference Engine
� Minimize Data movement

� Local memory for weights and activations
� Maximize data reusability

� Maximize computation efficiency
� Fully unrolled inner product
� One compute unit per channel
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TNN-Accelerator - CUTIE
��������		
�
���
����������
���
	��
�
���
�����������


Completely Unrolled Ternary Inference Engine
� Minimize Data movement

� Local memory for weights and activations
� Maximize data reusability

� Maximize computation efficiency
� Fully unrolled inner product
� One compute unit per channel
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864 ternary multipliers per OCU
82’944 MAC operations in one cycle!!
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CUTIE –TNN Accelerator
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Completely Unrolled Ternary Inference Engine
� Minimize Data movement

� Local memory for weights and activations
� Maximize data reusability

� Maximize computation efficiency
� Fully unrolled inner product
� One compute unit per channel

� Minimize switching activity
� Exploit sparsity of values
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Mapping - TCN to CNN
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Length = 8
Dilation = 4

Width = 4
Height = 4

How can we map 1D TCNs to 2D CNNs?
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Mapping – TCN to CNN
��������		
�
���
����������
���
	��
�
���
�����������


TinyML EMEA Forum - 9.6.2021 



Width = 1
Height = 10

Width = 8
Dilation = 1
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Mapping – TCN to CNN
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Implementation - TCN
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� Control is extended to support TCNs
� Very minimal hardware modifications
� Mapping is performed in software

� TCN activation memory
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What is the cost for TCN support?
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� Area overhead
� Control modifications
� Additional activation memory

� GF 22 nm technology
� 96 input/output channels, 64x64 feature maps
� 8-layer, 3x3 kernels
� 1.86 mm2 / 9.3MGE, post-synthesis
� Only 1% increase for TCN support
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Results – Power and Energy
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� GF 22 nm technology
� 0.65 V @ 66 MHz, post-synthesis
� Peak energy efficiency: 910 TOp/s/W
� Avg. energy efficiency: 450 TOp/s/W 

� Inference on DVSGesture
� 92.6% accuracy
� Core energy per inference: 1 µJ
� Core throughput: 5.48 TOp/s
� Core inference Time: 78 µs
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Conclusion
��������		
�
���
����������
���
	��
�
���
�����������


� Processing temporal data on the edge is possible
� Ternary TCNs are well-suited for edge processing

� Smart Mapping of 1D TCN to 2D CNN
� Mapping is primarily done in software
� only 1% hardware area increase

� CUTIE achieves exceptional energy-efficiency
� Peak performance of 910 TOp/s/W in GF 22 nm
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Optimized models for embedded
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(e.g. TensorFlow Lite Micro)
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TinyML for all developers

www.edgeimpulse.com

Test

Edge Device Impulse

Dataset

Embedded and
edge compute 

deployment 
options

Acquire valuable 
training data 

securely

Test impulse 
with real-time 
device data 
flows

Enrich data and 
train ML 
algorithms

Real sensors in real 
time

Open source SDK



Automotive
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Power efficiency Efficient learningPersonalization

Action
Reinforcement learning 
for decision making

Perception
 Object detection, speech 
recognition, contextual fusion

Reasoning
Scene understanding, language 
understanding, behavior prediction

Advancing AI 
research to make 

efficient AI ubiquitous

A platform to scale AI 
across the industry
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Syntiant Corp. is moving artificial intelligence and machine learning from the cloud to edge 
devices. Syntiant’s chip solutions merge deep learning with semiconductor design to produce 
ultra-low-power, high performance, deep neural network processors. These network processors 
enable always-on applications in battery-powered devices, such as smartphones, smart speakers, 
earbuds, hearing aids, and laptops. Syntiant's Neural Decision ProcessorsTM offer wake word, 
command word, and event detection in a chip for always-on voice and sensor applications.

Founded in 2017 and headquartered in Irvine, California, the company is backed by Amazon, 
Applied Materials, Atlantic Bridge Capital, Bosch, Intel Capital, Microsoft, Motorola, and others. 
Syntiant was recently named a CES® 2021 Best of Innovation Awards Honoree, shipped over 10M 
units worldwide, and unveiled the NDP120 part of the NDP10x family of inference engines for 
low-power applications. 

www.syntiant.com @Syntiantcorp 
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Adaptive AI for the Intelligent Edge
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sensiml.com

Build Smart IoT Sensor 
Devices From Data
SensiML pioneered TinyML software 
tools that auto generate AI code for the 
intelligent edge. 

• End-to-end AI workflow
• Multi-user auto-labeling of time-series data
• Code transparency and customization at each 

step in the pipeline

We enable the creation of production-
grade smart sensor devices.
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