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DNN Layer

A DNN Conv2D layer: 

3D operand (W/I/O) space.

7D nested for-loop 
MAC operation space.

Each Operand has its own 
(ir)relevant loop dimensions.

 r loops contribute to 
data size.

 ir loops contribute to 
data reuse.

 pr loops contribute to both 
data size and data reuse.
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DNN Layer

A lot of ML workloads can fit into the regular nested 
for-loop format.

No data dependency between each for-loop.

Conv2D

MMM
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DNN Accelerator
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Temporal Mapping
(Loop tilling, ordering)

Spatial Mapping
(Loop unrolling)

Layer-wise Mapping (a.k.a. Dataflow)
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Operation Parallelism

Data Stationarity

Large Design 
Degrees of Freedom!
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Co-Exploration
Algorithm

Mapping

Hardware

Technology and Others

Technology: 65nm/40nm/28nm/…,
NVM, CIM, 3D IC, etc.

Others: Sparsity, various precisions, 
cross-layer execution, etc.

HUGE design space at each level & at combined levels.
Regular workload & Deterministic processing flow & Well-defined HW components.
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 Unified Design Point Representation

 Standardized HW Cost Estimation

 Automated Design Point Generation

ZigZag Overview
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Unified Design Point Representation

Supporting uneven mapping opens up new mapping possibilities, thus prone to find better 
design points. 
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Standardized HW Cost Estimation

At each memory level (shared or non-shared), for each operand (W/I/O), the key matrices 
(e.g., memory access count) are extracted following the same procedure. 

Loop Relevance Principle (LRP)

Extracting Loop Info. based on LRP
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Automated Design Point Generation

A lot of clever search/optimization algorithms can be applied in this step.

A Design Point = Hardware Arch. + Spatial Mapping + Temporal Mapping

Memory-pool-based 
memory hierarchy 

search engine

Exhaustive search/
Heuristic search

Exhaustive search/
Heuristic search/
Iterative search

Memory hierarchy 
size ratio / cost ratio; 
Area constraints; … 

Pruning 
Principles

(no/minor
optimality 

loss)

Spatial data reuse 3D 
Pareto Surface (W/I/O); 

Symmetrical 
dimension pruning; … 

Make sure data reuse exist 
at each memory level 
(during loop tilling);

Maximize data stationarity 
at lower memory levels 

(during loop ordering); …
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Validation Against Real Designs

Energy validation against Eyeriss published data Energy validation against an in-house accelerator

The energy mismatches across all layers are within 7.5%.
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Validation Against SotA Framework

Energy validation against Timeloop+Accelergy (TL ↔ TL/ZZ).

Mapping search engine comparison against Timeloop (TL/ZZ ↔ ZZ).

ZigZag found better design points than Timeloop due to the uneven mapping support.
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Case Study      

Algorithm accuracy – Energy – Latency – Area design space visualization.

Neural Network HW Cost Comparison

Memory pool @ 65 nm technology, CACTI7
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Case Study      

Algorithm accuracy – Energy – Latency trade-off quantification.

Neural Network HW Cost Comparison

Memory pool @ 65 nm technology, CACTI7

Accuracy order (#) < Energy/Latency order (#)
Accuracy order (#) = Energy/Latency order (#)
Accuracy order (#) > Energy/Latency order (#)

Assumes all NNs follow layer-by-layer execution 
(no cross-layer optimization, e.g. depth-first)
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Extension
AiMC (Analog-in-Memory Computing)

Modeling using ZigZag

Digital Core       v.s.      Analog Core

Besides focusing on optimizing the efficiency of 
the AiMC core itself, it is important to also 
assess/optimize the performance of the AiMC
core in the complete processing system. 

LOMA (Loop-Order-based Memory Allocation)
-- A fast exhaustive temporal mapping 

search method

By combining an lightweight permutation generator 
with a bottom-up memory allocation, LOMA executes 
in near-constant and predictable CPU run-time with a 
small CPU memory requirement. 
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 ZigZag, as a fast DSE framework for DNN accelerator, can find 
better design points due to its uneven mapping support.

 ZigZag can be applied/extended/improved to/in multiple directions, 
and we are working on it!

Conclusion & Key Takeaways
 High-level DSE is important to gain insight from the vast joint DNN-

HW-Mapping design space.

 A general 3-step methodology for building a DNN accelerator DSE 
framework: 

Unify data representation / Standardize cost extraction / Automate design point generation
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Optimized models for embedded
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(e.g. TensorFlow Lite Micro)
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(i.e. CMSIS-NN)
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TinyML for all developers

www.edgeimpulse.com

Test

Edge Device Impulse

Dataset
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edge compute 

deployment 
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with real-time 
device data 
flows

Enrich data and 
train ML 
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Real sensors in real 
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Open source SDK



Automotive

IoT/IIoT

Mobile

Cloud

Power efficiency Efficient learningPersonalization

Action
Reinforcement learning 
for decision making

Perception
 Object detection, speech 
recognition, contextual fusion

Reasoning
Scene understanding, language 
understanding, behavior prediction

Advancing AI 
research to make 

efficient AI ubiquitous

A platform to scale AI 
across the industry

Edge cloud

Model design, 
compression, quantization, 

algorithms, efficient 
hardware, software tool

Continuous learning, 
contextual, always-on, 

privacy-preserved, 
distributed learning

Robust learning 
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Qualcomm AI Research is an initiative of Qualcomm Technologies, Inc.



Syntiant Corp. is moving artificial intelligence and machine learning from the cloud to edge 
devices. Syntiant’s chip solutions merge deep learning with semiconductor design to produce 
ultra-low-power, high performance, deep neural network processors. These network processors 
enable always-on applications in battery-powered devices, such as smartphones, smart speakers, 
earbuds, hearing aids, and laptops. Syntiant's Neural Decision ProcessorsTM offer wake word, 
command word, and event detection in a chip for always-on voice and sensor applications.

Founded in 2017 and headquartered in Irvine, California, the company is backed by Amazon, 
Applied Materials, Atlantic Bridge Capital, Bosch, Intel Capital, Microsoft, Motorola, and others. 
Syntiant was recently named a CES® 2021 Best of Innovation Awards Honoree, shipped over 10M 
units worldwide, and unveiled the NDP120 part of the NDP10x family of inference engines for 
low-power applications. 

www.syntiant.com @Syntiantcorp 



Platinum Sponsors



10

www.infineon.com





Gold Sponsors
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sensiml.com

Build Smart IoT Sensor 
Devices From Data
SensiML pioneered TinyML software 
tools that auto generate AI code for the 
intelligent edge. 

• End-to-end AI workflow
• Multi-user auto-labeling of time-series data
• Code transparency and customization at each 

step in the pipeline

We enable the creation of production-
grade smart sensor devices.
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