“An Introduction to Optimizing ML Models with TVMC”

Chris Hoge - OctoML

Seattle Area Group – February 18, 2021
tinyML Talks Sponsors

arm

tinyML Strategic Partner

EDGE IMPULSE

maxim integrated

Qeexo

Reality AI

SynSense

Additional Sponsorships available – contact sponsorships@tinyML.org for info
Arm: The Software and Hardware Foundation for tinyML

1. Connect to high-level frameworks
2. Supported by end-to-end tooling
3. Connect to Runtime

- Profiling and debugging tooling such as Arm Keil MDK
- Optimized models for embedded
- Optimized low-level NN libraries (i.e. CMSIS-NN)
- RTOS such as Mbed OS
- Arm Cortex-M CPUs and microNPUs

Stay Connected
- @ArmSoftwareDevelopers
- @ArmSoftwareDev

Resources: developer.arm.com/solutions/machine-learning-on-arm
WE USE AI TO MAKE OTHER AI FASTER, SMALLER AND MORE POWER EFFICIENT

Automatically compress SOTA models like MobileNet to <200KB with little to no drop in accuracy for inference on resource-limited MCUs

Reduce model optimization trial & error from weeks to days using Deeplite's design space exploration

Deploy more models to your device without sacrificing performance or battery life with our easy-to-use software

BECOME BETA USER bit.ly/testdeeplite
TinyML for all developers

Dataset

- Acquire valuable training data securely
- Enrich data and train ML algorithms

Edge Device

- Real sensors in real time
- Open source SDK

Embedded and edge compute deployment options

Test

- Test impulse with real-time device data flows

Get your free account at http://edgeimpulse.com
Maxim Integrated: Enabling Edge Intelligence

Sensors and Signal Conditioning

Health sensors measure PPG and ECG signals critical to understanding vital signs. Signal chain products enable measuring even the most sensitive signals.

Low Power Cortex M4 Micros

The biggest (3MB flash and 1MB SRAM) and the smallest (256KB flash and 96KB SRAM) Cortex M4 microcontrollers enable algorithms and neural networks to run at wearable power levels.

Advanced AI Acceleration

The new MAX78000 implements AI inferences at over 100x lower energy than other embedded options. Now the edge can see and hear like never before.
Qeexo AutoML for Embedded AI
Automated Machine Learning Platform that builds tinyML solutions for the Edge using sensor data

Key Features

- Wide range of ML methods: GBM, XGBoost, Random Forest, Logistic Regression, Decision Tree, SVM, CNN, RNN, CRNN, ANN, Local Outlier Factor, and Isolation Forest
- Easy-to-use interface for labeling, recording, validating, and visualizing time-series sensor data
- On-device inference optimized for low latency, low power consumption, and a small memory footprint
- Supports Arm® Cortex™- M0 to M4 class MCUs
- Automates complex and labor-intensive processes of a typical ML workflow – no coding or ML expertise required!

Target Markets/Applications

- Industrial Predictive Maintenance
- Automotive
- Smart Home
- Mobile
- Wearables
- IoT
- Wearables

QEEexo AUTOML: END-TO-END MACHINE LEARNING PLATFORM

For a limited time, sign up to use Qeexo AutoML at automl.qeexo.com for FREE to bring intelligence to your devices!
Reality AI tools® software

- Automated Feature Exploration and Model Generation
- Bill-of-Materials Optimization
- Automated Data Assessment
- Edge AI / TinyML code for the smallest MCUs

Reality AI solutions

- Automotive sound recognition & localization
- Indoor/outdoor sound event recognition
- RealityCheck™ voice anti-spoofing

https://reality.ai ⌟ info@reality.ai ⌟ @SensorAI ⌟ Reality AI
SynSense builds ultra-low-power (sub-mW) sensing and inference hardware for embedded, mobile and edge devices. We design systems for real-time always-on smart sensing, for audio, vision, IMUs, bio-signals and more.

https://SynSense.ai
Next tinyML Talks

<table>
<thead>
<tr>
<th>Date</th>
<th>Presenter</th>
<th>Topic / Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday, March 2</td>
<td>Eben Upton founder of the Raspberry Pi Foundation</td>
<td>Inference with Raspberry Pi Pico and RP2040</td>
</tr>
</tbody>
</table>

Webcast start time is 8 am Pacific time

Please contact talks@tinyml.org if you are interested in presenting
Local Committee in Seattle

Karl Fezer

Contact: karl@tinyml.org
Announcement

www.tinyML.org/summit2021

Highlights:
- Keywords: Premier Quality, Interactive, LIVE ... and FREE
- 5 days, 50+ presentations
- 4 Tutorials
- 2 Panel discussions: (i) VC and (ii) tinyML toolchains
- tinyML Research Symposium
- Late Breaking News
- 3 Best tinyML Awards (Paper, Product, Innovation)
- 10+ Breakout sessions on various topics
- tinyML Partner sessions
- tinyAI for (Good) Life
- LIVE coverage, starting at 8am Pacific time

What should I do about it:
- Check out the program – you will be impressed
- Register on-line (takes 5 min)
- If interested: Submit nominations for Best Awards and/or Late News – February 28 deadline
- Block out your calendar: March 22-26
- Become a sponsor (sponsorships@tinyML.org)
- Actively participate at the Summit
- Provide your feedback – we listen !
- Don’t worry about missing some talks – all videos will be posted on YouTube.com/tinyML
tinyML is growing fast

<table>
<thead>
<tr>
<th></th>
<th>2019 Summit (March 2019)</th>
<th>2020 Summit (Feb 2020)</th>
<th>2021 Summit (March 2021), expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attendees</td>
<td>160</td>
<td>400+</td>
<td>3000+</td>
</tr>
<tr>
<td>Companies</td>
<td>90</td>
<td>172</td>
<td>300+ (?)</td>
</tr>
<tr>
<td>Linkedin members</td>
<td>0</td>
<td>798</td>
<td>~ 2000</td>
</tr>
<tr>
<td>Meetups members</td>
<td>0</td>
<td>1140</td>
<td>~ 5000</td>
</tr>
<tr>
<td>YouTube subscribers</td>
<td>0</td>
<td>0</td>
<td>~ 3000</td>
</tr>
</tbody>
</table>

also started in Asia: tinyML WeChat and BiliBili
Summit Sponsors
(as of Feb 15, 2021)

Contact: sponsorships@tinyML.org

multiple levels and benefits available
(ayo check www.tinyML.org)
Reminders

Slides & Videos will be posted tomorrow

tinyml.org/forums youtube.com/tinyml

Please use the Q&A window for your questions
Chris Hoge

Chris has more than 10 years of experience in helping build open source communities, including strategic program management for the OpenStack Foundation and as a SIG co-founder in the Kubernetes community. He has a background in Applied Mathematics, and lives in the PNW.
An Introduction to Apache TVM and TVMC

Chris Hoge, Developer Advocate for Apache TVM
choge@octoml.ai
Why should you use TVM?
How does TVM work?
How do you install TVM?
How do you use TVMC?
Why should you use TVM?

How does TVM work?

How do you install TVM?

How do you use TVMC?
A Simple Image Classification Example

Phase I: Train the Classifier (training)
Phase II: Deploy the Classifier (inference)
Phase I: Train the Classifier (we are not concerned with this…)
Phase 2: Deploy the Classifier (what we are interested in with this talk...)

1. On what?
2. How fast / accurate?
 - throughput
 - quality
3. Inside of what?
 - Python, C++, C, Rust etc.
Let the Deployment Challenge Begin!

|----------|---|---|---|---|---|---|---|---|---|---|---|---|

OctoML
Let the Deployment Challenge Begin!

<table>
<thead>
<tr>
<th>PyTorch</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Caffe2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TensorFlow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mxnet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONNX</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TensorFlow Lite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

✅
Let the Deployment Challenge Begin!
Introducing TVM

The open-source optimization framework for machine learning
- Ingests models from Pytorch, Tensorflow, ONNX, MxNet, etc.
- Targets x86, ARM, NVIDIA GPU, AMD GPU, MIPS, RISC-V, etc.
- Linux, Mac, iOS, Android, Zephyr OS, Windows, WebGPU etc.
Introducing TVM

- TVM is an open source optimizing compiler framework for machine learning.
- An official Apache project.
- Community owned.
- Active discussion forums.
- Regular meetups and conferences.
Problems TVM Addresses

- Portability: When there are limited hardware options to deploy your model to.
- Efficiency: When you need to make your model run effectively on a target platform.
- Software Support: When you need to build a new software stack for your hardware system.
Why should you use TVM?

How does TVM work?

How do you install TVM?

How do you use TVMC?
A Quick Overview of TVM

- Relay
- frontends
- AutoTVM
- TOPI
- TE
- Target
- TIR
- arith
- IR
- node
- Runtime

OctoML
The Runtime is the foundation of the TVM stack. It provides the foundation to load and run compiled TVM artifacts.
A Quick Overview of TVM - IR

The IR layer of TVM is the low level compiled Intermediate Representation of a computation, with unified data structures and interfaces for all function variants.
A Quick Overview of TVM - TIR

The TIR module has low level language invariants that represent functions which can be transformed to equivalent functions by multiple passes.
A Quick Overview of TVM - Target

The Target module contains the code that allows an IR function to be transformed into a runtime object. It allows for TVM to target different architectures.
The Tensor Expression (TE) module is a domain specific functional language that allows for the templated expression of tensor computation, which can be transformed in TIR passes using schedule operators.
An Example Operator: Matrix Multiplication

Naive Approach

```c
void multiply(int mat1[][N],
    int mat2[][N],
    int res[][N])
{
    int i, j, k;
    for (i = 0; i < N; i++)
    {
        for (j = 0; j < N; j++)
        {
            res[i][j] = 0;
            for (k = 0; k < N; k++)
                res[i][j] += mat1[i][k] * mat2[k][j];
        }
    }
}
```

Optimized Approach (snippet from 1000s lines of code)

```c
prefetcht0  PARSER * SIZE(%ebx, %edx, 2)
FLD  0 * SIZE(%ebx) # at = *(a_offset + 0 * lda)
fmul %st(1),%st # at1 *= bt1

prefetcht0  PARSER * SIZE(%ecx)
faddp %st,%st(2) # at1 += at1
FLD  0 * SIZE(%ecx) # at1 = *(a_offset2 + 0 * lda)

prefetcht0  PARSER * SIZE(%ecx, %edx, 2)
fmul %st(1),%st # at1 *= bt1
faddp %st,%st(3) # at2 += at1

prefetcht0  PARSER * SIZE(%ebx)
FLD  0 * SIZE(%ebx, %edx, 2) # at = *(a_offset + 2 * lda)
fmul %st(1),%st

faddp %st,%st(4)
FLD  0 * SIZE(%ecx, %edx, 2) # at1 = *(a_offset2 + 2 * lda)
fmulp %st, %st(1)

faddp %st,%st(4)
FLD  1 * SIZE(%esi)
FLD  1 * SIZE(%ebx) # at = *(a_offset + 0 * lda)
fmul %st(1),%st # at1 *= bt1
faddp %st,%st(2) # at1 += at1
faddp %st,%st(2)
FLD  1 * SIZE(%ecx) # at1 = *(a_offset2 + 0 * lda)
```

10-100x faster
Basic Matrix Multiplication in TE and TIR

Tensor-Expression DSL defines the algorithm and the schedule

```
# Algorithm
k = te.reduce_axis((0, K), "k")
A = te.placeholder((M, K), name="A")
B = te.placeholder((K, N), name="B")
C = te.compute((M, N), lambda x, y: te.sum(A[x, k] * B[k, y], axis=k), name="C")
```

Default schedule
s = te.create_schedule(C.op)

Tensor-Level IR (TIR) program defines the low-level implementation (can be compiled down to LLVM IR, CUDA, OpenCL et.)

```
primfn(A_1: handle, B_1: handle, C_1: handle) -> ()
  attr = {"global_symbol": "main", "tir.noalias": True}
  buffers = {B: Buffer(B_2: Pointer(float32), float32, [1024, 1024], [])},
           C: Buffer(C_2: Pointer(float32), float32, [1024, 1024], []),
           A: Buffer(A_2: Pointer(float32), float32, [1024, 1024], [])}
  buffer_map = {A_1: A, B_1: B, C_1: C} {
      for (x: int32, 0, 1024) {
           for (y: int32, 0, 1024) {
               C_2([((x*1024) + y)] = 0f32
                   for (k: int32, 0, 1024) {
                       C_2([((x*1024) + y)] = (float32)C_2([((x*1024) + y)] + (float32)A_2([((x*1024) + k)]*(float32)B_2([((k*1024) + y)]))
                   }
            }
        }
    }
```
Tiling and Reordering of MatMul in TE and TIR

```
bn = 32
s = te.create_schedule(C.op)

# Blocking by loop tiling
xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)
(k,) = s[C].op.reduce_axis
ko, ki = s[C].split(k, factor=4)

# Hoist reduction domain outside the blocking loop
s[C].reorder(xo, yo, ko, ki, xi, yi)
```
Vectorization of Matrix Multiplication in TE and TIR

```python
s = te.create_schedule(C.op)
xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)
(k,) = s[C].op.reduce_axis
ko, ki = s[C].split(k, factor=4)
s[C].reorder(xo, yo, ko, ki, xi, yi)

# Vectorization
s[C].vectorize(yi)
```
Optimized Matrix Multiplication in TE and TIR

Before:

```python
s = te.create_schedule(C.op)
CC = s.cache_write(C, "global")
xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)
s[CC].compute_at(s[C], yo)
xc, yc = s[CC].op.axis
(k_i) = s[CC].op.reduce_axis
ko, ki = s[CC].split(k_i, factor=4)
s[CC].reorder(ko, xc, ki, yc)
s[CC].unroll(ki)
s[CC].vectorize(yc)

# parallel
s[C].parallel(xo)
```

After: 20x faster

```python
s = te.create_schedule(C.op)
CC = s.cache_write(C, "global")
xo, yo, xi, yi = s[C].tile(C.op.axis[0], C.op.axis[1], bn, bn)
s[CC].compute_at(s[C], yo)
xc, yc = s[CC].op.axis
(k_i) = s[CC].op.reduce_axis
ko, ki = s[CC].split(k_i, factor=4)
s[CC].reorder(ko, xc, ki, yc)
s[CC].unroll(ki)
s[CC].vectorize(yc)

# parallel
s[C].parallel(xo)
```

OctoML
Optimized Matrix Multiplication Summary

- With 13 lines of scheduling code, we can increase performance by about 200x
 - Tiling, loop permutations lead to better cache hit rates
 - Array packing to turn non-continuous access patterns into continuous pattern
- Vectorizations takes advantage of special hardware instructions
- Thread-level parallelization makes use of all of the cores
The Tensor Operator Inventory (TOPI) is a collection of predefined TE templates covering a range of common operators for a range of platforms.
AutoTVM and AutoScheduler are both components that automate the search for an optimized schedule. Includes tuning records, cost models, feature extraction, and search policies.
AutoTVM for Finding Optimal Schedules

Objective: \[\arg\min_{c \in S_e} f(g(e, c)) \]

Learning to Optimize Tensor Programs. Chen et al. NeurIPS 18
AutoTVM for Finding Optimal Schedules with ML

Use machine learning to learn a statistical cost model

\[c \xleftarrow{\hat{f}(e, c)} c \]

Expression \(e \)

Search Space \(S_e \)

AutoTVM

Code Generator

Statistical Cost Model

\[\mathcal{D} \]

Training data

\[f(x) \]

Benefit: Automatically adapt to hardware type

Learning to Optimize Tensor Programs. Chen et al. NeurIPS 18
A Quick Overview of TVM - Relay

Relay is a high level functional intermediate representation that is used to represent full models. It supports different ‘dialects’ for different types of optimizations (quantization, memory, dynamic vms).
Graph Level Optimization with Relay

Are these many DRAM accesses really necessary?
Graph Level Optimization with Relay - Fusion

- The idea is to fuse multiple operators into a single operator to minimize memory access.
- If you have to rely on an operator library, you need to add implementations for fused operators! That’s a long list of operators.
- Thankfully with more flexible code-generation approaches like TVM, we can generate fused kernels on demand.
Results with TVM

- TVM definition and schedule implementation for depthwise conv2d is less than 700 lines long (much less than 13k lines)

- This covers all kernel sizes (not just 3x3), data type implementation (not just uint8)
A Quick Overview of TVM - frontends

TVM includes a number of different frontends to ingest models from different frameworks.
Results on RPi with TVM

Comparing TFLite (TF2.1.0) vs. TVM vs. TVM + Autotuner vs. TVM + Autoscheduler on RPi4b CPU

Ansor: Generating High-Performance Tensor Programs for Deep Learning, Zheng et al. OSDI 2020
Why should you use TVM?

How does TVM work?

How do you install TVM?

How do you use TVMC?
Install TVM the Easy Way - tlcpack.ai

About TLCPack

TLCPack – Tensor learning compiler binary package. It is a community maintained binary builds of deep learning compilers. TLCPack does not contain any additional source code release. It takes source code from Apache TVM and build the binaries by turning on different build configurations. Please note that additional licensing conditions may apply (e.g. CUDA EULA for the cuda enabled package) when you use the binary builds.

TLCPack is not part of Apache and is run by thirdparty community volunteers. Please refer to the official Apache TVM website for Apache source releases.

Licenses for TVM and its dependencies can be found in the github repository.

<table>
<thead>
<tr>
<th>Build</th>
<th>0.8.dev107+g7b11b9217</th>
<th>Nightly</th>
</tr>
</thead>
<tbody>
<tr>
<td>Your OS</td>
<td>Linux</td>
<td>Mac</td>
</tr>
<tr>
<td>Package</td>
<td>Conda</td>
<td>Pip</td>
</tr>
<tr>
<td>CUDA</td>
<td>10.0</td>
<td>None</td>
</tr>
<tr>
<td>Run this Command:</td>
<td>conda install tlcpack-nightly -c tlcpack</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © 2020 TLCPack. Apache TVM, Apache, the Apache feather, and the Apache TVM project logo are either trademarks or registered trademarks of the Apache Software Foundation.
Why should you use TVM?
How does TVM work?
How do you install TVM?
How do you use TVMC?
Model: ONNX representation of ResNet-50v2

class='n02123045 tabby, tabby cat' with probability=0.610552

class='n02123159 tiger cat' with probability=0.367179

class='n02124075 Egyptian cat' with probability=0.019365

class='n02129604 tiger, Panthera tigris' with probability=0.001273

class='n04040759 radiator' with probability=0.000261
TVMC Demo Roadmap

● Download the ResNet-50v2 Model in ONNX format.
● Download a test image.
● Compile the ONNX model to TVM (Relay).
● Create a tuning record of the model with TVM.
● Compile an optimized model with TVM and compare timings.
● Cross compile the model to run on RPi.
● Remotely tune with RPi.
Download the ONNX ResNet-50v2 Model

resnet50-v2-7.onnx:

```
$(info -=-==*** Downloading resnet50-v2-7.onnx ***==-=--) 
curl -L \ 
https://github.com/onnx/models/raw/master/vision/classification/resnet/model/resnet50-v2-7.onnx \ 
-o resnet50-v2-7.onnx
```

synset.txt:

```
$(info -=-==*** Downloading additional onnx model file synset.txt ***==-=--) 
```

imagenet-simple-labels.json:

```
$(info -=-==*** Downloading additional labels for onnx model ***==-=--) 
curl -L \ 
https://raw.githubusercontent.com/anishathalye/imagenet-simple-labels/master/imagenet-simple-labels.json \ 
-o imagenet-simple-labels.json
```
Download and Process the Test Input

kitten.jpg:
$(info ---===*** Downloading kitten.jpg ***===---)

kitten.npz: kitten.jpg
$(info ---===*** Converting kitten.jpg to kitten.npz ***===---)
python3 process_input.py
Compile and Benchmark the TVM Model

resnet50-v2-7.tvm: resnet50-v2-7.onnx

$(info ---===*** Compiling unoptimized TVM model for resnet50-v2-7 ***===---)
tvmc compile \
--target "llvm -mcpu=skylake" \
--output resnet50-v2-7.tvm \
resnet50-v2-7.onnx 2> /dev/null

tvm.txt: kitten.npz synset.txt resnet50-v2-7.tvm

$(info ---===*** Benchmarking unoptimized TVM model for resnet50-v2-7 ***===---)
echo "=== Begin tvm benchmark results ===" > tvm.txt
tvmc run \
--inputs kitten.npz \
--output predictions.npz \
--print-time \
--repeat 5 \
resnet50-v2-7.tvm > tvm.txt python3 process_output.py >> tvm.txt
echo "=== End tvm benchmark results ===" >> tvm.txt
echo tvm.txt
Unoptimized TVM Runtime Results

Execution time summary:

<table>
<thead>
<tr>
<th>mean (s)</th>
<th>max (s)</th>
<th>min (s)</th>
<th>std (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10221</td>
<td>0.08514</td>
<td>0.06656</td>
<td>0.00680</td>
</tr>
</tbody>
</table>

class='n02123045 tabby, tabby cat' with probability=0.610552
class='n02123159 tiger cat' with probability=0.367179
class='n02124075 Egyptian cat' with probability=0.019365
class='n02129604 tiger, Panthera tigris' with probability=0.001273
class='n04040759 radiator' with probability=0.000261

=== End tvm benchmark results ===
Tune the Model

autotuner_records.json: resnet50-v2-7.onnx

```
$(info ===*** TVM autotuning model for resnet50-v2-7 ***===)
tvmc tune \
--target "llvm -mcpu=skylake" \
--output autotuner_records.json \
resnet50-v2-7.onnx 2> /dev/null
```

[Task 1/24] Current/Best: 7.34/ 22.55 GFLOPS | Progress: (192/1000) | 346.60 s Done.
[Task 2/24] Current/Best: 35.23/ 327.39 GFLOPS | Progress: (960/1000) | 919.97 s Done.
[Task 5/24] Current/Best: 40.97/ 225.42 GFLOPS | Progress: (800/1000) | 626.83 s Done.
[Task 6/24] Current/Best: 54.34/ 332.29 GFLOPS | Progress: (1000/1000) | 547.70 s Done.
[Task 7/24] Current/Best: 36.05/ 368.79 GFLOPS | Progress: (1000/1000) | 681.76 s Done.
[Task 8/24] Current/Best: 25.19/ 326.91 GFLOPS | Progress: (972/1000) | 488.87 s Done.
[Task 10/24] Current/Best: 82.75/ 294.44 GFLOPS | Progress: (972/1000) | 538.51 s Done.
[Task 12/24] Current/Best: 63.72/ 390.99 GFLOPS | Progress: (1000/1000) | 608.81 s Done.
[Task 13/24] Current/Best: 49.65/ 355.64 GFLOPS | Progress: (1000/1000) | 445.91 s Done.
[Task 14/24] Current/Best: 84.85/ 380.20 GFLOPS | Progress: (1000/1000) | 464.45 s Done.
[Task 16/24] Current/Best: 60.96/ 345.70 GFLOPS | Progress: (1000/1000) | 629.26 s Done.
[Task 17/24] Current/Best: 59.07/ 343.07 GFLOPS | Progress: (1000/1000) | 606.57 s Done.
[Task 18/24] Current/Best: 51.77/ 366.14 GFLOPS | Progress: (980/1000) | 461.96 s Done.
[Task 19/24] Current/Best: 25.12/ 320.29 GFLOPS | Progress: (1000/1000) | 536.89 s Done.
[Task 20/24] Current/Best: 33.15/ 398.32 GFLOPS | Progress: (980/1000) | 439.43 s Done.
[Task 21/24] Current/Best: 47.83/ 394.72 GFLOPS | Progress: (308/1000) | 202.34 s Done.
[Task 22/24] Current/Best: 9.60/ 331.94 GFLOPS | Progress: (1000/1000) | 696.29 s Done.
[Task 23/24] Current/Best: 40.74/ 305.27 GFLOPS | Progress: (1000/1000) | 743.44 s Done.
[Task 24/24] Current/Best: 43.27/ 244.60 GFLOPS | Progress: (1000/1000) | 1053.60 s Done.
Compile and Benchmark the Optimized TVM Model

resnet50-v2-7-autotuned.tvm: resnet50-v2-7.onnx

$(info ---===*** Compiling optimized TVM model for resnet50-v2-7 from cache ***===---)
tvmc compile \
--target "llvm -mcpu=skylake" \
--tuning-records autotuner_records.json \
--output resnet50-v2-7-autotuned.tvm \
resnet50-v2-7.onnx 2> /dev/null

tvm-autotuned.txt: kitten.npz synset.txt resnet50-v2-7-autotuned.tvm

$(info ---===*** Benchmarking optimized TVM model for resnet50-v2-7 ***===---)
echo "=== Begin tvm-autotuned benchmark results ===" >> tvm-autotuned.txt
tvmc run \
--inputs kitten.npz \
--output predictions.npz \
--print-time \
--repeat 5 \
resnet50-v2-7-autotuned.tvm > tvm-autotuned.txt
python3 process_output.py >> tvm-autotuned.txt
echo "=== End tvm benchmark results ===" >> tvm-autotuned.txt
echo tvm-autotuned.txt
Optimized TVM Runtime Results

=== Begin tvm-autotuned benchmark results ===
Execution time summary:

<table>
<thead>
<tr>
<th></th>
<th>mean (s)</th>
<th>max (s)</th>
<th>min (s)</th>
<th>std (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>time</td>
<td>0.03243</td>
<td>0.03655</td>
<td>0.03059</td>
<td>0.00106</td>
</tr>
</tbody>
</table>

class='n02123045 tabby, tabby cat' with probability=0.610552
class='n02123159 tiger cat' with probability=0.367179
class='n02124075 Egyptian cat' with probability=0.019365
class='n02129604 tiger, Panthera tigris' with probability=0.001273
class='n04040759 radiator' with probability=0.000261
Remote Execution with TVMC and RPC
Cross Compile and the Model for RPi

resnet50-v2-7-arm.tvm: resnet50-v2-7.onnx

$(info ---===*** Compiling unoptimized TVM model for ARM ===---)
tvmc compile \
--target "llvm -device=arm_cpu -mtriple=aarch64-linux-gnu" \
--cross-compiler aarch64-linux-gnu-gcc \
--output resnet50-v2-7-arm.tvm \nresnet50-v2-7.onnx
Run the Model on RPi using Remote Execution

tvm-arm.txt: kitten.npz synset.txt resnet50-v2-7-arm.tvm

$(info -------*** Benchmarking unoptimized TVM model for resnet50-v2-7 ***-----)
echo "=== Begin tvm benchmark results ===" > tvm.txt
tvmc run \
--inputs kitten.npz \
--output predictions.npz \
--print-time \
--repeat 5 \n--rpc-tracker $(TRACKER):$(TRACKER_PORT) \n--rpc-key raspberry \
resnet50-v2-7-arm.tvm > tvm-arm.txt
python3 process_output.py >> tvm-arm.txt
echo "=== End tvm arm benchmark results ===" >> tvm-arm.txt
echo tvm-arm.txt
Tune Model for RPi using Remote Execution

autotuner_records-arm.json: resnet50-v2-7-arm.tvm

$(info ---==*** TVM autotuning model for resnet50-v2-7-arm ***==---) \
tvmc tune \
--target "llvm -device=arm_cpu -mtriple=aarch64-linux-gnu" \
--cross-compiler aarch64-linux-gnu-gcc \
--output autotuner_records-arm.json \
--rpc-tracker $(TRACKER):$(TRACKER_PORT) \
--rpc-key raspberry \
resnet50-v2-7.onnx 2> /dev/null
Want to learn more?

- Discuss Forum: https://discuss.tvm.apache.org
- Docs: https://tvm.apache.org/docs
- Source: https://github.com/apache/tvm
- Demo Code: https://github.com/hogepodge/tvm-demo
- Monthly Community Meetings
 - Third Thursday at 9:00 AM PT
- Twitter: @ApacheTVM
- *TinyML Tokyo talk, Introduction to uTVM:*
 - https://www.youtube.com/watch?v=R1ZSF5X3JOE

Contact me: choge@octoml.ai or @hogepodge on Twitter
TVM Literature

- TVM: An Automated End-to-End Optimizing Compiler for Deep Learning
- Learning to Optimize Tensor Programs
- Ansor: Generating High-Performance Tensor Programs for Deep Learning
- Nimble: Efficiently Compiling Dynamic Neural Networks for Model Inference
This presentation in this publication was presented as a tinyML® Talks webcast. The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyML.org