
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Tiny Neural Deep Clustering: An Unsupervised Approach for 
Continual Machine Learning on the Edge

Andrea Albanese1, Matteo Nardello1, and Davide Brunelli1
1Department of Industrial Engineering, University of Trento, Trento, Italy.

Continual Machine Learning (CML)

CML permits automatic updates of ML systems during
inference.
• Overcome the context drift problem.
• Avoid system maintenance due to model re-training.
• Learn new patterns and classes.
• Adapt to environment and context changes.

However, CML systems are challenging:
• Catastrophic forgetting.
• Computationally demanding for tinyML systems.

Tiny Neural Deep Clustering (TinyNDC)

Frozen model

Active Model

Online deep clustering

Case study

Experimental results

Experimental results

Conclusion

References

TinyNDC implements CML in an unsupervised setting.
This research proves:
• The real-time execution of such a system in an embedded 

device is feasible.
• The light and fast performance of the system, even though the 

high complexity due to the pseudo-label estimation.

The system reaches:
• 99.3% of learning accuracy.
• Execution at 43 FPS.

Future improvements will include:
• Update of the inner layers.
• Add clues for new classes.

[1] D. Maltoni and V. Lomonaco, "Continuous learning in single-incremental-task 
scenarios," Neural Networks, vol. 116, pp. 56-73, 2019. 
[2] F. Zenke, B. Poole and S. Ganguli, "Continual learning through synaptic 
intelligence," International Conference on Machine Learning, pp. 3987-3995, 2017.
[3] H. Ren, D. Anicic and T. A. Runkler, "Tinyol: Tinyml with online-learning on 
microcontrollers," 2021 international joint conference on neural networks (IJCNN), 
pp. 1-8, 2021.
[4] X. Zhan, J. Xie, Z. Liu, Y.-S. Ong and C. C. Loy, "Online deep clustering for 
unsupervised representation learning," Proceedings of the IEEE/CVF conference 
on computer vision and pattern recognition, pp. 6688-6697, 2020.
[5] A. M. N. Taufique, C. S. Jahan and A. Savakis, "Unsupervised continual learning 
for gradually varying domains," Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, pp. 3740-3750, 2022.
[6] J. a. Z. L. a. C. W.-M. a. W. W.-C. Lin, C. Gan and S. Han, "On-device training 
under 256kb memory," arXiv preprint arXiv:2206.15472, 2022.

TinyNDC is a fast and light architecture that 
implements unsupervised CML on 

microcontrollers.

It is composed of three main components:
• The Frozen model.
• The Active model.
• The Online deep clustering.

Algorithm Accuracy Precision Recall F-score

Supervised CML 94.3%±1.2% 95.0%±1.2% 94.0%±1.2% 94.0%±1.2%

Unsupervised 
CML (clustering)

90.7%±0.6% 91.0%±0.6% 91.0%±0.6% 91.0%±0.6%

Tiny NDC 92.3%±1.2% 93.0%±1.2% 92.0%±1.2% 92.0%±1.2%

Task Supervised CML 
(ms)

Unsupervised CML 
(clustering) (ms)

Tiny NDC
(ms)

Frozen model 16.39 16.39 16.39

Clustering - 2.18 2.18

Active model 1.38 - 1.38

Clustering update - 0.22 0.22

Active model 
update

2.34 - 2.34

TOTAL 20.10 18.79 22.50

State of the Art
Current state-of-the-art CML strategies (e.g., CWR [1], LWF [2],
and tinyOL [3]) well adapt to new data.
à LIMIT: they need a ground truth for carrying out the
backpropagation.

Other works overcome this limitation:
• “Online Deep Clustering” [4] implements semi-unsupervised

CML by combining clustering and deep learning.
• “Unsupervised Continual Learning for Gradually Varying

Domains” [5] implements clustering for classifying data in an
unsupervised setting.

à LIMIT: no embedded implementation.

Only the work “On-device training under 256kb memory” [6]
presents an embedded implementation but in a supervised
setting.

What is missing is an embedded solution for implementing
unsupervised CML to get closer to real-world exploitation.

The static part of the system which is
not updated during runtime. It can be
any NN truncated in the last layer
(e.g., the Softmax classifier).

The dynamic part of the system which is
updated during runtime. It is composed of
two sub-modules, namely the
consolidated layer and the training layer.
• The consolidated layer acts as a

memory to not forget the previous
knowledge.

• The training layer is used for domain
adaptation.

• A custom algorithm that uses L2-norm to group data.

It is fed with the output of the frozen model and produces the
pseudo-label estimation.
• The pseudo-label is fundamental for updating the active

model.
• The clustering can update its centroids by using the prediction

of the active model.
• The clustering’s centroids need to be initialized with a small

amount of data (i.e., 10 samples per class).

Image classification with MNIST dataset running on OpenMV
Cam H7 Plus.
• Digits from 0 to 5 are used to train the frozen model.
• Digits from 6 to 9 are added as new classes.

• 35000 samples for training the frozen model.
• 100 samples for cluster initialization (10 per class).
• 8000 samples for testing the CML functionalities.

The active model can
update its weights and
biases and add new
classes if the current data is
not associated with an
already known class.
à The selected update
policy is CWR [1].

• Its parameters are fixed after training and cannot be trained
in real time.

• Its objective is to extract features from incoming data.

TinyNDC is compared with the same system in a supervised
setting (Supervised CML) (i.e., without the pseudo-label
estimation with clustering), and with the clustering algorithm
acting as an unsupervised CML system (Unsupervised CML).

TinyNDC
Frozen + ODC + Active

Supervised CML
Frozen + Active

Unsupervised CML
Frozen + ODC

Tests are performed with 8000 samples and scores are computed
with the last 1000 samples.

1. Monitoring the degradation of performance of tinyNDC wrt
supervised CML and unsupervised CML.

• Even though tinyNDC
works in a challenging
scenario, its performance
is comparable with
supervised CML.

• The poor performance of
unsupervised CML
confirms the effectiveness
of tinyNDC in combining
clustering with DL.

2. Measure the execution time of each task to ensure real-time
capability and possible employment in real-world applications.

• TinyNDC needs more time than the other strategies to
process one sample and perform the model update.

• Even though TinyNDC uses a combination of clustering and
DL, the processing complexity is not increased considerably.


