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MAYO TEAM 
PATH TO 
TINYML

• Disclosures

• Background (Wearable Platform, Data, Models)

• The Path to Low-Energy Machine Inference

• Towards Generative Physiologic Signals
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DISCLOSURE
NO CONFLICTS

Past work supported by Mayo IR&D and 
Government funding – no explicit funding 
for the presented and updated content
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https://blogs.ed.ac.uk/research-office/2021/02/10/competency-framework-for-research-funding-a-tool-to-help-you-evaluate-and-plan-your-route-to-research-funding-success/
https://creativecommons.org/licenses/by-nc-nd/3.0/
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BACKGROUND

Scalable and Modular 
Wearable Platform

Data Collection
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WEARABLE DEVELOPMENT  TIMELINE

2007 2010 2012 2017 2018 2019

Non-exercise activity thermogenesis
Wearable device to measure a subject's 
activity over extended time durations.

Precision and accuracy
Long term calibration and accuracy of 
MEMs sensor transducers, in addition 
to 30-60 day run-times.

Longest Remote Recording Device
15-day run-time, ECG and motion data 
recording, from a 2012 Everest summit 
expedition on elite climbers and base 
camp researchers.

Multi-sensor Platform
Modular and scalable architecture 
to support a plethora of physiologic 
and environmental sensors, a 
device capable of  full wave 
recording and real-time processing.

Core Technology and Variants
Sponsored to develop the core 
technology; mission specific variants; 
as well as real-time analysis and 
predictive algorithms.

Present and Future 
Development

Optical characterization and 
optical sensing development

Full system 
integration, and 
advanced embedded 
algorithms

Past Research and 
Development
Micro-electronic and 
integrated circuit 
package 
miniaturization

202*

Special Purpose
Device variants with a 
targeted use.
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DEVELOPMENT 
PILLARS

Use wearable prototypes to collect 
physiologic signals, evaluate signals to 
estimate biomarkers, iterate design.
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• Rapid prototype device variants 
from core-technology

• Modular to include various 
sensor transducers

• Scalable long-runtimes (limited 
features) to many sensor 
streams

• Lightweight algorithm 
development target

• Test and characterize sensor 
transducers

WEARABLE PLATFORM 
AND DEVICE VARIANTS
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WEARABLE PLATFORM ARCHITECTURE

SHM (P0)
(sensor hub module)

SAM (P1)
(system and analysis 

module)

WIM (P2)
(wireless interface 

module)

Sensor
Tranducers

MIM (P3)
(machine inference module)

Device
Display

Waveform Store
(non-volatile memory)

HostHIM
USB
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SHM: HDL METHODOLOGY

• Hardware Description Methodology

• Leveraged a Python based hardware description language 
(HDL), MyHDL, remove redundant layers of programmability.  
The methodology fully exploits an executable elaboration phase 
to provide system level parameretization.  Further, energy 
conservation is achieved by reduced toggle rates on the 
programmable logic, i.e. a field programmable gate array (FGPA) 
, when compared to a central processing unit (CPU).
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PHYSIOLOGIC 
DATASETS 
AND TARGETS

Human Subject 
Studies

Clinical Data 
Collection
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HYPOVOLEMIA HUMAN 
SUBJECT TESTS

• Hypovolemia (blood loss) is the leading 
cause of death in trauma victims.  

• Traditional vitals signs yield little insight 
into severity, as the body compensates for 
blood loss and maintains pulse and blood 
pressure.

• To gain a better understanding of 
hypovolemia, Lower Body Negative 
Pressure (LBNP) human studies are 
performed.

• The Compensatory Reserve Metric (CRM) 
was developed to characterize 
hypovolemia progression from these 
physiologic signals.

Mayo omni-device

• ECG
• Same Side PPG
• Finger Clamp PPG

Mayo Clinic completed 100 LBNP studies 
to support analysis, model validation and 
development
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LOWER BODY NEGATIVE PRESSURE (LBNP)
MODEL FOR HYPOVOLEMIA (CRM/CRA)
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HYPOXIC-HYPOXIA HUMAN SUBJECT TESTS

• Goals:
• Concurrent collection of ECG waveforms using 

laboratory reference and wearable omni-device.
• Quantification of physiologic response to hypoxic 

conditions.
• 15k feet experiment and 25k feet experiment.

• Cognitive assessments at baseline and under 
hypoxic hypoxia conditions.

• There is a lack of objective 
measures to predict, prevent, 
monitor, and mitigate cerebral 
hypoxia and hypoxia-related 
physiological and cognitive 
dysfunction.

• Goal: characterize regional 
versus global cerebral 
oxygenation and oxygen 
consumption during mental 
tasks. 
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HUMAN SUBJECT 
PHYSIOLOGIC WAVEFORMS
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LOWER EXTREMITY INJURY PREDICTION 
DATASETS
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THE PATH TO 
LOW-ENERGY 
MACHINE 
INFERENCE

First Models … Small Models … 
Reduced Models
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Figure from: What is the difference …
https://quantdare.com/what-is-the-difference-between-deep-learning-and-machine-
learning/#:~:text=We%20refer%20to%20shallow%20learning,learning%20that%20are%20not%20deep.

https://quantdare.com/what-is-the-difference-between-deep-learning-and-machine-learning/#:~:text=We%20refer%20to%20shallow%20learning,learning%20that%20are%20not%20deep.
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TRADITIONAL 
MACHINE-LEARNING

• First endeavors into lightweight 
machine-learning 

• Featured engineered 

• Use of traditional machine-
learning < 1K Bytes coefficients

• LSVM and Ridge classifiers

• Additional processing, pre and 
post
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CRM MODEL FRAMEWORK AND ARCHITECTURE
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MODEL RAMEWORK INJURY PREVENTION

IMU Data

Video Capture Data

Feature
Extraction

Label
Extraction

Labels
(Annotations)

Machine 
Learning 
Algorihtm

Classifier 
Model

Training
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LOW-ENERGY 
MACHINE 
INFERENCE

Low-Energy 
Machine-Inference

Pipelines to Reduce 
Models

Adding a Machine Inference 
Processing Node: Towards 
Lightweight Low-Energy Machine 
Inference on a Wearable
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WEARABLE PLATFORM ARCHITECTURE

SHM (P0)
(sensor hub module)

SAM (P1)
(system and analysis 

module)

WIM (P2)
(wireless interface 

module)

Sensor
Tranducers

MIM (P3)
(machine inference module)

Device
Display

Waveform Store
(non-volatile memory)

HostHIM
USB

GAP9
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GAP9 
SELECTION

GAP9

• Small size, WLCSP

• RISCV
• Multi-CPU
• NE Accelerator

• Low-Energy
• Joule per inference
• ML Accelerators

• Toolflow

Alternates

• Some

• Few
• None
• Some

• Some
• Not at high 

parallelization

• Some



©2023 Mayo Foundation for Medical Education and Research  |  slide-24

• Small footprint, did not 
increase our device 
footprint

• Opportunities for smaller 
specific variants

• GPA9 design (streaming) 
fits into the overall 
architecture

MACHINE INFERENCE 
(GPA9) ADDITION

GAP9: Low-Energy 
Machine Inference 
Processor

38 mm

28 mm

Low-Energy 
FPGA

Low-Energy 
General Purpose 
Microcontroller
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CONCEPTUAL PROCESSING PIPELINE

Pytorch

ONXX

Model 
Generation

Tensorflow

Other
MLIR

Intermidiate 
Representation

Structure 
Compression

Node 
Pruning

Quantization

Model 
Reduction

Verification

Restructure

Model Reduction/Minimization Pipeline for 
Low-Energy Wearable Processing 

Low-Energy 
Machine Inference 
Processor

38 mm

28 mm

Low-Energy 
General Purpose 
Microcontroller

Low-Energy 
FPGA

Wearable Development Platform (omni-platform) 
Multivariate/Multimodal Sensor Streams, 

Low-Energy, Scalable and Modular
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DATFLOW TO THE GAP9

MIM (P3: GAP9)SHM (P1)

SAM (P1)
(system and analysis 

module)

Data 240 bytes

DSTSRC

PID VID Format

Timestamp

RSVD2 CRC16

RSVD1

Data 240 bytes

DSTSRC

PID VID Format

Timestamp

RSVD2 CRC16

RSVD1

Data 240 bytes

DSTSRC

PID VID Format

Timestamp

RSVD2 CRC16

RSVD1

Data 240 bytes

DSTSRC

PID VID Format

Timestamp

RSVD2 CRC16

RSVD1

Data 240 bytes

DSTSRC

PID VID Format

Timestamp

RSVD2 CRC16

RSVD1

Data 240 bytes

DSTSRC

PID VID Format

Timestamp

RSVD2 CRC16

RSVD1

Sample 
Packet 

Generation

 Sample 
Streams

C8

Timestamp

C0 C1 C2 C3

C4 C5 C6 C7 NE

L2
1.5MB

L1 128KB (shared)

Sensor
Tranducers

Sensor
Tranducers

Sensor
Tranducers

Sensor
Tranducers

Sensor
Tranducers

Sample Packets Sample Packets

Data 240 bytes

DSTSRC

PID VID Format

Timestamp

RSVD2 CRC16

RSVD1

Data 240 bytes

DSTSRC

PID VID Format

Timestamp

RSVD2 CRC16

RSVD1

Data 240 bytes

DSTSRC

PID VID Format

Timestamp

RSVD2 CRC16

RSVD1

Summary Packets

Fabric Support and Peripherals
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TOWARDS 
GENERATIVE 
(DENOISING)
PHYSIOLOGIC 
SIGNALS

Real-time generative denoising of 
signals capture in free-living 
environments
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FREE-LIVING, FREE-ROAMING,  HIGH-ACTIVITY

"Clipart courtesy FCIT"
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GENERATIVE 
(DENOISING) MODELS

Model creation to generatively create the 
full-waveforms from low-fidelity high 
artifact physiologic signals

Mayo Generative Model

Encoderx x z

Regenerative / Generative Signals
Multimodal / Multivariate 
Inputs omni-wearable sensor stream inputs

Decoder

The generative model will be the 
decoder of the autoencoder structure

Description 
representation 
parameters
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CONCLUSION
DATA, MODELS, WEARABLE 
DEVICE

Data

Models

Device

Building Physiologic Datasets 
• Hypothesize Biomarkers

• Design study to induce condition
• Record physiologic signals for 

emulated conditions
Build Models from Signals
• Clinical reference for conditions
• Unbounded resource models
Wearable Device 
• Lightweight and low-energy (tinyML)
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QUESTIONS 
& ANSWERS



Copyright Notice
This presentation in this publication was presented at the tinyML® Summit (March 28 - 29, 2023). The 
content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations 
in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the 
authors and their respective companies and may contain copyrighted material. As such, it is strongly 
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tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org
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