

Search Space Optimization in Hardware-Aware Neural Architecture Search

Dennis Rieber, Joschka Theissen*, Thomas Elsken
Bosch Research, Germany
*RWTH Aachen University, Germany

- A search space design that is not aware of the target hardware (HW) architecture can lead prolonged search time
- From experience, specific HW-architectures can execute some operators more efficiently than others
- Only searching in the part of the search space with the most promising candidates can reduce the overall search effort

BLOX NAS Benchmark

• We use the **BLOX NAS Benchmark [5]** as a baseline search space. It contains ~90k possible architectures. A DNN is constructed from three subsequent blocks, where each block is one of 45 sub-networks.

- To implement the search, we extend a simple evolutionary NAS method [2] to multi-objective optimization by using non-dominated sorting [3] for ranking candidates.
- All networks are evaluated on CIFAR-100 and the shown accuracies are top-1 accuracies on the test set.
- Latency values are obtained by actual measurements on ARM Cortex-M7 and estimates using Microsoft NN-Meter [6] on ARM Cortex-A76 and Qualcomm Adreno 640 GPU.

Search Space Pruning

- We investigate search space pruning prior to the search.
- An "efficiency" metric is used to evaluate all building blocks
- The metric aims to quantify the computational effort necessary for a forward-pass of a single block and its potential to improve the accuracy of the network.
- This metric is then used to prune the search space, before the search is started.
- Evaluated metric: parameters/latency: this metric is fully hardware-aware while requiring no training

Convergence Analysis

- We employ the generational distance, which measures the distance w.r.t. the theoretically optimal pareto front to evaluate convergence speed in different search spaces
- Pruning significantly accelerates the speed of convergence
- Very aggressive pruning (i.e., 90%) leads to very fast early convergence, but eventually to sub-optimal result
- Comparing HW-aware metric-based pruning with random pruning: significantly worse performance than HW-aware pruning as well as un-pruned, baseline search space

 The following table shows the generational distance at different stages during the evolution for three different devices and different pruning strategies.

		Evolutions						
Hardware	Pruning	10	100	250	500	1000	2000	3000
Adreno 640	0%	0.351	0.175	0.139	0.110	0.078	0.058	0.015
	70%	0.200	0.041	0.017	0.004	<u>0.001</u>	0.002	0.002
	90%	0.028	0.012	0.010	0.006	0.006	0.007	0.006
	Random 70%	0.167	0.099	0.025	0.077	0.083	0.088	0.089
Cortex A76	0%	0.363	0.183	0.128	0.079	0.061	0.019	0.033
	50%	0.342	0.112	0.030	0.031	0.027	0.011	0.003
	70%	0.242	0.047	0.035	0.005	0.002	0.001	<u>0.000</u>
	90%	0.056	0.013	0.015	0.002	0.001	0.001	0.001
Cortex M7	0%	0.304	0.237	0.166	0.111	0.097	0.000	0.000
	50%	0.054	0.039	0.046	0.026	0.003	0.000	0.000
	70%	0.334	0.064	0.029	0.003	0.000	0.000	0.000
	90%	0.012	0.035	0.002	0.002	0.002	0.002	0.002

Post-Pruning Solution Space

• NAS yields similar results after just 200 evolutions on a pruned search space compared to 2000 evolutions on the baseline search space, while significantly outperforming the baseline search space at 200 evolutions:

Looking at all discovered architectures reveals, that search space pruning shifts the discovered space towards more promising regions with architectures of lower inference latency and higher test accuracy:

Conclusion

- Search Space Pruning demonstrates promising results across different hardware targets
- Drastically reduced search time
- NAS on unpruned search spaces also discovers as good or better solutions in theory, but doesn't reach these levels within reasonable searching time
- Trade-off between quality and time-to-solution

However:

- BLOX NAS is a "closed" problem, with a finite set of reasonably good solutions on a well-known task.
- In real-world applications, even the coarse structure of a good solutions in not always known.
- Thus "open problems" with potentially infinite search spaces are a reality that needs to be faced.
- How well offline-methods work on open problems remains to be investigated.

References

- [1] Hadjer Benmeziane, et al. "A comprehensive survey on hardware-aware neural architecture search", IJCAI 2021
- [2] Real et al., "Regularized Evolution for Image Classifier Architecture Search", AAAI 2019
- [3] Dennis Rieber, et al. "Joint program and layout transformations to enable convolutional operators on specialized hardware based on constraint programming.", Transactions on Architectures and Code-Optimizations (TACO), volume 19, 2021.
- [4] Colin White, et al. "Neural architecture search: Insights from 1000 papers." arXiv preprint, 2023
- [5] Thomas Chau et al. "BLOX: Macro Neural Architecture Search Benchmark and Algorithms", 2022
- [6] Li Lyna Zhang et al. "Nn-METER: Towards Accurate Latency Prediction of DNN Inference on Diverse Edge Devices.", GetMobile: Mobile Computing and Communications, 2022

