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Introduction: AI at the Edge

Challenges and Motivations

Twofold Sparsity

Network-level Sparsity

Bit-level Sparsity: DNN training under Bit representation

Architecture of multi-bit RCIM

Result: Accuracy

Result: Energy

Conclusion

• ResNet-20 using CIFAR-10 dataset.
• Estimated total energy including multiplication, ADC 

and LFSR

Intelligence 
is Moving to 

the Edge

Source: Qualcomm

§ Challenges:

§ DNN model workload:
§ Large and over-parameterized models
§ Computationally intensive
§ Always on and real-time processing

§ Hardware constrained:
§ Memory and bandwidth limitations
§ Power/battery constrained

§ Motivation:

§ Von Neumann architecture :
§ Prohibitive power dissipation
§ Massive data transfer between the PEs and 

memory
§ High Latency

§ CIM architectures :
§ A memory cell itself serves as a PE and 

memory
§ Low-latency 
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Indices from LFSR
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Hardware co-design

2-bit/cell CIM Energy

• Compute-In-Memory architecture are deployed for the 
inference.
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• ResNet-20 using CIFAR-10 dataset.

• Accuracy of the network in different sparsity (%).

• Accuracy before post training is slightly higher.

• A joint bit- and network-level sparse DNN for energy-
efficient RRAM based CIM. 

• The network is sparsified during training by adding two 
regularizer. 

• We demonstrate that TwofoldS improves the energy 
efficiency by up to 5x for ResNet on Cifar10.

Energy(pJ/2bits)
00 0.079

01 0.36

10 0.73

11 1.49

ADC 0.208

• Motivation: 𝑬𝟏𝟏~𝟐𝟎×𝑬𝟎𝟎
• It is desirable to have more 00 and 01 than 10 and 11

• The goal is to sparsify the model
     in the bit-level to have more 00
     in their bit representation.

• We use Linear Feedback Shift Register (LFSR) to 
generate pseudo random indices.

• The network is pruned based on the selected indices.

𝑬𝟏𝟏~𝟐𝟎×𝑬𝟎𝟎


