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With the transition to electronic health records (EHR) over the last
decade, the amount of EHR data has increased exponentially,
providing an incredible opportunity to unlock this data with AI to
benefit the healthcare system. The particularly sensitive healthcare
data requires edge inference and the search for efficient deep
learning architectures are particularly needed. Hardware-aware
Neural Architecture Search (HW-NAS)[1] has been successfully
applied to visual tasks such as image classification and object
detection.

We present, MIAS, an adaptable HW-NAS strategy for medical
imaging applications. Our approach is based on a flexibly designed
supernetwork[2] and efficient multi-objective search. MIAS aims at
assisting radiologists and physicians in their daily diagnostics by
finding the most-efficient and accurate algorithm for a specific
application.

Objectives & Contributions:

• Introduce MIAS, a flexible and adaptable HW-NAS for medical
imaging analysis.

• Highlight the significance of data pre-processing in medical AI
and integrate an automatic data pre-processing step in MIAS

• Present the first NAS benchmark for medical imaging targeting
11 tasks and summarizing performance metrics as well as
hardware efficiency.

MIAS Methodology

Figure 1: Overview of MIAS.

MIAS is composed of two main components, shown in Figure 1:
1- Automatic Data Pre-processing: Given a dataset, an input shape, and an
output shape, data pre-processing is highly critical, especially for medical data.

• Imputation: According to NIFTII and DICOM medical standards, data
imputation is applied on the different attribute of the data.

• Transformation: Depending on the medical imaging type, i.e., X-rays, a
dedicated reshaping and flipping, rotating is achieved.

• Demographic Analysis: We analyse the dataset based on demographic
attributes such as age and gender. We generate a demographic report which
summarizes how general the dataset is.

• Split: We split into a balanced training set and a validation set that is
proportional to the original dataset.

• Operator Selection: We design a dictionary of operators that are suitable
for a given input type and output. Based on the input and output shapes and
the type of input extracted from the DICOM/NIFTII files, a set of operators is
selected for each layer and an over-parameterized supernetwork is
designed. The search space is based on a U-Net-like architecture. The
upsampling part of the U-Net can be pruned in the case of classification on
2D images.

2- Training & Search: The training of the supernetwork is done alongside the
search. During the training, we prune the paths that provide the least task-specific
metric/latency trade-off.

• Supernetwork Construction: The operator list produced by the first
component summarizes the list of possible block structures allowed. Figure
2 shows the general block architecture and the different architecture
hyperparameters that build it.

Figure 2: Block architecture in the search space.

Given the operator list, a U-net-like supernetwork architecture is built
recursively. Figure 3 shows the U-net-like search space. If a segmentation task
is learnt, each block has its equivalent upsampling block. If only a
classification/detection is applied, the network is only constructed with a series
of down blocks. The number of blocks in the network is also searched.

Figure 3: U-Net-like Search Space.

• Training & Pruning: The training of the supernetwork is done in a multi-
objective way, using this loss function:

𝐿 = 𝜖𝑐𝑒𝑇𝑆𝐿 + 𝜖𝑙𝑎𝑡 𝑇
𝑇 = Σ

!
max
"
(𝑙𝑎𝑡 𝑏 )

Here, TSL stands for the task-specific loss, 𝜖𝑐𝑒 and 𝜖𝑙𝑎𝑡 are static weights
assigned to the task-specific loss and latency loss. T computes the minimized
latency. This sums the latencies of the slowest sampled block in each layer. 𝑙 is
the layer, 𝑏 is the block and 𝑙𝑎𝑡 is the computed latency of the block on the
targeted hardware platform.

For each training iteration, we prune the paths that provide the least task-
specific metric/latency trade-off. Note that the task-specific performance metric
is curated for medical purposes. In other terms, in a tumour classification
scenario, we favour optimizing precision rather than recall to ensure all tumours
are detected without any false positives.

• Validation Report Generation: Following FDA best practices, our final
results are presented in a Validation Plan. The validation plan includes:
• Intended Use
• Algorithm Description with a graph of the final model
• Training dataset information including demographic analysis
• Validation dataset requirements which defines the ranges of attributes.

Outside of these ranges, it is not guaranteed to have a good
performance.

• Performance Results, including task-specific performance and hardware
efficiency

Experimentation & Results
Our experiments are conducted on two datasets: brain tumor detection and
hippocampus volume estimation. Both datasets come from the Medical
Segmentation Decathlon[3]. The targeted hardware platform is Raspberry Pi3.
This edge device is cheap and resource-limited.

The Raspberry Pi 3 Model B is equipped with a Broadcom BCM2837 SoC with a 1.2
GHz quad-core ARM Cortex-A53 CPU, and 1GB RAM, and runs the Raspbian
operating system.

Training hyperparameters
Hyperparameter tuning was achieved during training of the supernetwork. The
tuning objective is the task specific loss only. In both trainings, we randomly sample
a fixed number of sub-networks that is set to 10.

Hyperparameter Lr 𝜖𝑙𝑎𝑡 𝜖𝑐𝑒 Batch_size epochs optim momentum

Brain-Tumor
Detection

0.01 0.3 0.7 32 300 SGD 0.9

Hippocampus 
Volume Estimation

0.03 0.4 0.6 32 300 SGD 0.9

Overall Resuls

Brain Tumor Detection 

Hippocampus Volume 
Segmentation

Search Evaluation
We analyze the evolution of sub-network training during training. We use the
kendall tau correlation to check if the architectures are correctly ranked.
Compared to FairNAS methodology on supernetwork our methodology is more
stable and more robust. The ranking correlation is computed by comparing the
ranking results during training to the actual ranking of independently trained
architectures.

Brain-tumor detection Hippocampus Volume 
Estimation

MLP RF Nn_unet[4] Ours MLP Nn_unet[4] Ours

Precision 1.00 0.81 0.89 0.92

Recall 0.2 0.8 0.83 0.9
F1-score 0.83 0.8 0.91 0.94
Dice score 0.73 0.65 0.91 0.943 0.67 0.92 0.954
Latency (ms)* 3.2 2.76 - 3.54 4.54 7.67 3.67

* Latencies were computed on Raspberry Pi3

In summary, our proposed HW-NAS approach for medical imaging applications
efficiently searches for deep learning architectures that can be deployed on edge
devices while maintaining high accuracy. Our results demonstrate the effectiveness
of this approach on brain tumor detection and hippocampus volume estimation
tasks, with potential for applications in other medical imaging tasks. Our approach
can unlock the potential of EHR data to benefit the healthcare system by providing
efficient and accurate medical imaging analysis on edge devices.

The absence of a comprehensive benchmark for Medical HW-NAS is a major
bottleneck. To address this limitation, our ongoing research is dedicated to the
development of a much-needed benchmark in this domain.
Based on the medical segmentation decathlon, we developed a benchmark called
MED-NAS-Bench.

Our benchmark enables:
1. Search for the most efficient and performant architecture on 11 tasks. The

benchmark includes task-specific performance such as dice and Jaccard
scores as well as efficiency metrics such as latency and energy
consumption.

2. Compare HW-NAS for medical segmentation.
3. Provide the benchmark and dataset for multi-task image segmentation.

HW-NAS methodologies that claim their multi-task ability should search
over 9 tasks and the resulting model should generalize on three unseen
tasks.

Figure 4: Evolution of the ranking correlation. 

Figure 5 MED-NAS-Bench Overview. This figure is inspired 
from MSD[3]


