Quantization-Aware Neural Architecture Search: Towards Efficient Semantic Segmentation on Edge Devices

Hiram Rayo Torres Rodriguez*, Sebastian Vogel, Nick van de Waterlaat, Willem Sanberg, Gerardo Daalderop

Problem Context and Solution Proposal

- Enabling efficient semantic segmentation on the edge is relevant for enabling various applications (e.g., self-driving vehicles) but designing optimal Deep Neural Networks (DNN) is hard and requires specialized skills.
- For successful edge deployment, hardware properties need to be considered during the design cycle increasing the complexity of the design space.
- Quantized model deployment can enable real-time performance on the edge but degrades task performance.

Method:
- "AI designing AI": Multi-objective hardware-aware optimization via Quantization-Aware Neural Architecture Search (QA-NAS) for optimal semantic segmentation on the edge.

Background and Motivation

- Neural Architecture Search (NAS) [1] can automatically design neural networks for multiple objectives but can be expensive.
- Weight-sharing NAS [2] speeds up NAS by using a supernet (Figure 1) but recent work:
 - Mostly focuses in improving supernet training.
 - Tackles low-scale Computer Vision (CV) tasks.
 - Disregards HW-awareness (quantization).

Our contributions:
- Extend a weight-sharing approach (FairNAS [3]) towards optimal semantic segmentation on Cityscapes [4] and MS-COCO [5].
- Introduce quantization-awareness into weight-sharing NAS to search for efficient edge-ready models.

Search Space Design

 - Kernel sizes, expansion ratios, dilation rates, layers.
- Designed for high task performance (mIoU) and low latency

Overview:

1. Supernet Training
 - Initialize supernet with ImageNet weights [8].
 - Train supernet following FairNAS [3].

2. Search
 - Randomly sample subnets from supernet.
 - Evaluate quantized task performance.
 - Profile networks on the target hardware.
 - Select the Pareto optimal solutions.

Train the found solutions to full convergence.

Results

- Figure 3: Quantization-Aware NAS for highly efficient semantic segmentation networks on NXP hardware.
- Figure 4: Performance of the found Pareto-optimal solutions on the Cityscapes dataset.
- Figure 5: Performance of the found Pareto-optimal solutions on the MS-COCO dataset.

Ranking correlation analysis

For both datasets, we evaluate the ranking correlation between subnet performance and stand-alone performance for 25 architectures, including:
- 12 Pareto optimal networks.
- 12 Pareto worse networks.
- The seed network.

We find a significant correlation between subnet and stand-alone performance, which encourages us to use this ranking mechanism in our experiments.

Table 1: Ranking correlation between subnet performance and stand-alone performance.

<table>
<thead>
<tr>
<th></th>
<th>Cityscapes</th>
<th>MS-COCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kendall τ</td>
<td>0.6000</td>
<td>0.7045</td>
</tr>
<tr>
<td>Spearman ρ</td>
<td>0.7777</td>
<td>0.8554</td>
</tr>
</tbody>
</table>

Future Work

- Investigate:
 - Extendibility of this method towards more diverse search spaces.
 - Applicability towards further industrial applications.

Executive Summary

We extend existing work [3] on weight-sharing NAS towards searching for optimal quantized semantic segmentation networks: Quantization-Aware Neural Architecture Search.

Via Quantization-Aware Neural Architecture Search we:
- Derive a trade-off between multiple-objectives.
- Reduce latency by up to 15% without compromising task performance on the Cityscapes dataset.
- Reduce inference latency by up to 13% while improving mIoU by 0.88 pp.

References

[1] T. Elsken et al., JMLR ’19
[3] X. Chu et al., ICCV ’21
[4] M. Cordts et al., CVPR ’15
[5] T. Lin et al., ECCV ’14
[6] M. Sandler et al., CVPR ’18
[8] J. Fang et al., ICLR ’20
[9] https://tinyurl.com/5xmkht5