

Quantization-Aware Neural Architecture Search: Towards Efficient Semantic Segmentation on Edge Devices Hiram Rayo Torres Rodriguez[™], Sebastian Vogel, Nick van de Waterlaat, Willem Sanberg, Gerardo Daalderop NXP Semiconductors, Eindhoven, The Netherlands.

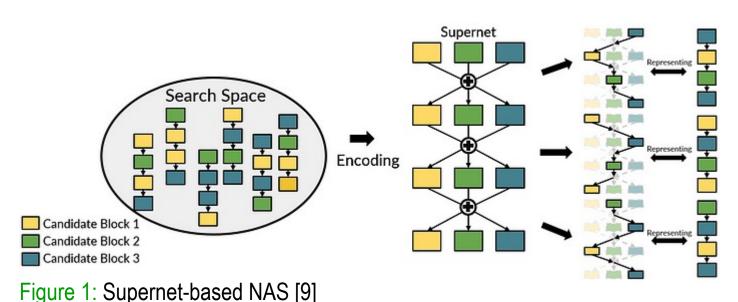
Problem Context and Solution Proposal

- Enabling efficient semantic segmentation on the edge is relevant for enabling various applications (e.g., self-driving vehicles) but designing optimal Deep Neural Networks (DNN) is hard and **requires specialized skills**.
- For successful edge deployment, hardware properties need to be considered during the design cycle increasing the complexity of the design space.
- Quantized model deployment can enable real-time performance on the edge but degrades task performance.

Method:

 "AI designing AI": Multi-objective hardware-aware optimization via Quantization-Aware Neural Architecture Search (QA-NAS) for optimal semantic segmentation on the edge.

Background and Motivation



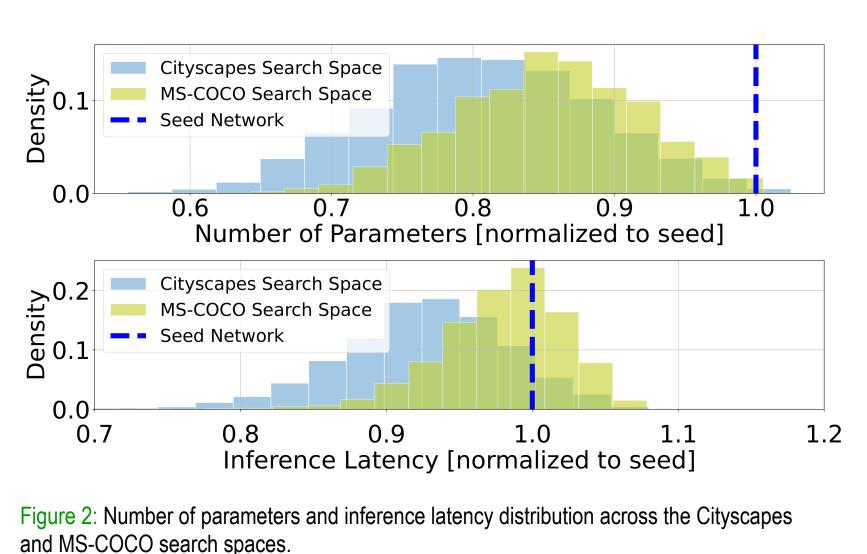
- Neural Architecture Search (NAS) [1] can automatically design neural networks for multiple objectives but can be expensive.
- Weight-sharing NAS [2] speeds up NAS by using a supernet (Figure 1) but recent work:
 - Mostly focuses in improving supernet training.
 - Tackles low-scale Computer Vision (CV) tasks.
 - Disregards HW-awareness (quantization).

Our contributions:

- Extend a weight-sharing approach (FairNAS [3]) towards optimal semantic segmentation on Cityscapes [4] and MS-COCO [5].
- Introduce quantization-awareness into weight-sharing NAS to search for efficient edge-ready models.

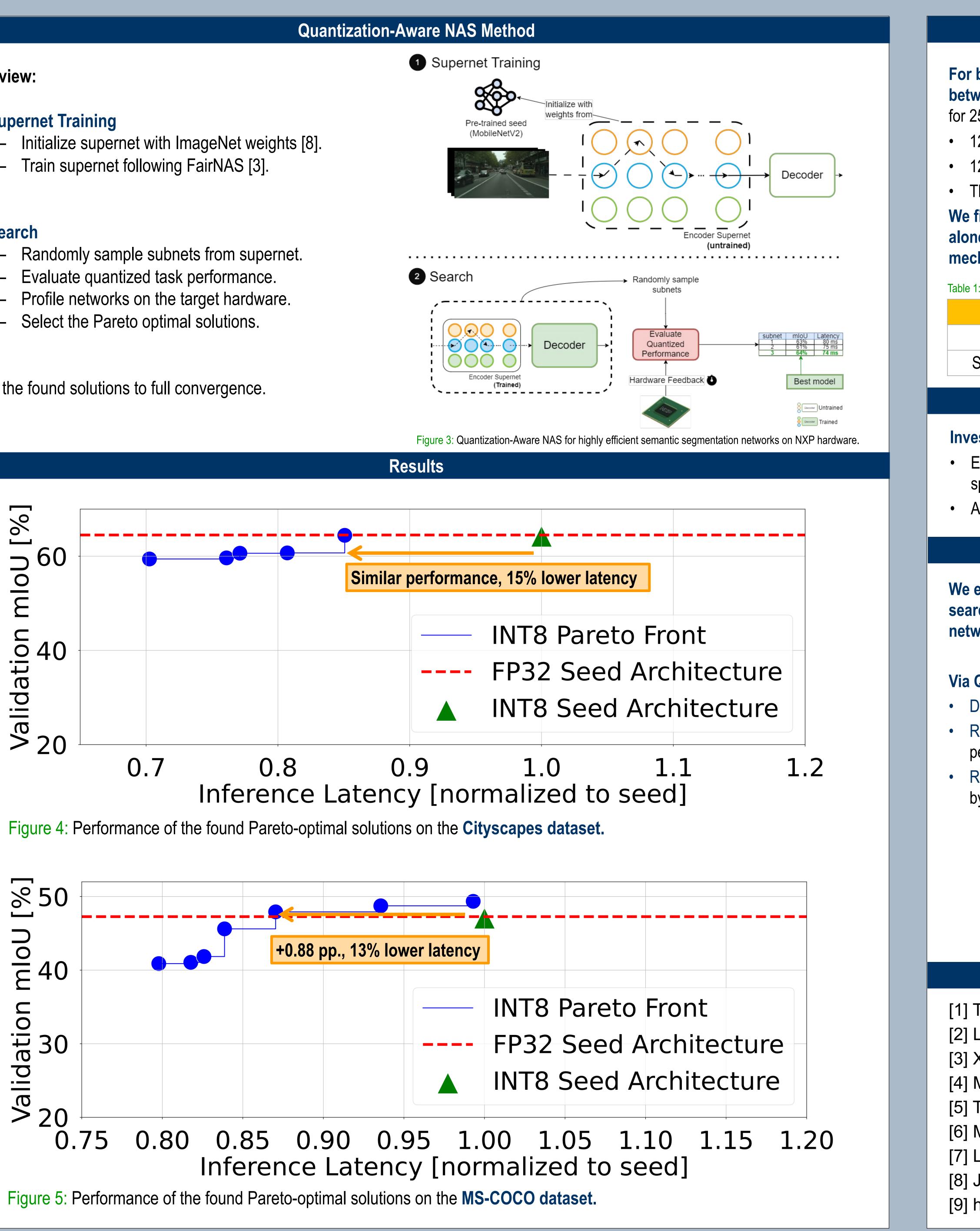
Search Space Design

- Searchable MobileNetV2 [6] encoder for DeeplabV3 [7] – Kernel sizes, expansion ratios, dilation rates, layers.
- Designed for high task performance (mIoU) and low latency



	Quantization-Aware NA
Overview:	1 Super
 Supernet Training Initialize supernet with ImageNet weights Train supernet following FairNAS [3]. 	s [8].
 Search Randomly sample subnets from superne Evaluate quantized task performance. Profile networks on the target hardware. Select the Pareto optimal solutions. Train the found solutions to full convergence. 	t. ② Searc
	Figure 3: Q

⊃ 60 0.7 0.8 0.9



[™] hiram.rayotorresrodriguez@nxp.com

Ranking correlation analysis

For both datasets, we evaluate the ranking correlation between subnet performance and stand-alone performance

for 25 architectures, including:

12 Pareto optimal networks.

12 Pareto worse networks.

• The seed network.

We find a significant correlation between subnet and standalone performance, which encourages us to use this ranking mechanism in our experiments.

Table 1: Ranking correlation between subnet performance and stand-alone performance.

	Cityscapes	MS-COCO
Kendall $ au$	0.6000	0.7045
Spearman $ ho$	0.7777	0.8554

Future Work

Investigate:

Extendibility of this method towards more diverse search spaces.

Applicability towards further industrial applications.

Executive Summary

We extend existing work [3] on weight-sharing NAS towards searching for optimal quantized semantic segmentation networks: Quantization-Aware Neural Architecture Search.

Via Quantization-Aware Neural Architecture Search we:

Derive a trade-off between multiple-objectives.

Reduce latency by up to 15% without compromising task performance on the Cityscapes dataset.

Reduce inference latency by up to 13% while improving mIoU by 0.88 pp.

References

- [1] T. Elsken et al., JMLR '19
- [2] L. Xie et al., ACM Surveys, 54-9, '21
- [3] X. Chu et al., ICCV '21
- [4] M. Cordts et al., CVPR '15
- [5] T. Lin et al., ECCV '14
- [6] M. Sandler et al., CVPR '18
- [7] L. Chen et al., arXiv:1706.05587
- [8] J. Fang et al., ICLR '20
- [9] https://tinyurl.com/5xrnkht5