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About the Speaker
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Research Highlights
• Leading AI Accelerator Design at IBM Research (2015~2019)
- Develop DNN accelerator chip and its SW stack (→ IBM Telum)
- Invent 8-bit DNN training and ultra-low bit DNN inference methods

• Winner of AI Grand Challenge 2020
by Ministry of Science and ICT
– Model Optimization Track ($600K Funding)

2021.8.23

https://scholar.google.com/citations?user=3qCaIbUAAAAJ&hl=ko&oi=ao 

B.S.(2010), M.S.(2010) at SNU (South Korea)
Ph.D.(2015) at UIUC (US)

HW & SW research for efficient AI

https://scholar.google.com/citations?user=3qCaIbUAAAAJ&hl=ko&oi=ao


Breakthrough in Deep Learning with Transformer Models

Translation

Image 
Generation

Stable Diffusion Public Release — Stability AI

Natural Language Understanding

https://stability.ai/blog/stable-diffusion-public-release


ChatGPT (“A Game Changer”)

• Generative pre-trained transformer (GPT) tuned for language generation

Ask ChatGPT: Why LLM works so well?



Challenges of LLM: Large Computational Cost

https://towardsdatascience.com/the-rise-of-cognitive-ai-a29d2b724ccc
(Wei et al., 2022)

Exponential size 
increase of Hyper-
scale AI models 

ChatGPT

Large computation required 
for emergent abilities

Operation cost + 
Environmental impact
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Reduced-Precision Quantization to the Rescue

• Energy/Memory savings on addition and multiplication ➔ Potential for efficient inference
– Productized in recent deep learning accelerators (Ex. NVIDIA Tensor Core)

O(Bit2) 

O(Bit) 

x2 

x2 

– Most computation of DNN: Multiply-Accumulate (MAC)

– Reduced-precision MAC simplifies compute unit
– Addition: Savings proportional to bit reduction

– Multiplication: Savings proportional to (bit reduction)2

Courtesy of part of slides: NVIDIA, Horowitz (2014)



Reduced-Precision Quantization – Basic

• Represent real values with finite number of states encoded by reduced bit-precision
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Courtesy of part of slides: MIT 6.5940 TinyML and 
Efficient Deep Learning Computing by Prof. H. Song



Quantization Techniques for Efficient LLM Inference
• Quantization represents real values with finite number of bits (in floating/fixed-point formats)

• Two types of DNN quantization: QAT and PTQ
– Post-Training Quantization (PTQ) directly converts parameters and activations to reduced-precision

– Quantization-Aware Training (QAT) exploits re-training to compensate quantization error
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Pretrained model Calibraition data
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Quantized model

Quantization-Aware Training (QAT)



INT8 Activation & Weight PTQ for Efficient LLM Inference

• Challenges: How to handle large activation outliers observed in large LMs (>6.7B)
– LLM.int8(): Separate outlier columns (> 𝛼=6.0) and compute them in FP16

– SmoothQuant: Scale weights (and descale activation) to flatten activation outliers

SmoothQuant (Xiao et al., ICML 2023)

LLM.int8() (Dettemers et al., NeurIPS 2022)



Weight-Only PTQ for Memory-Efficient LLM Inference (1/2)

• Manipulate activation/weight to minimize impact of weight quantization
– OPTQ: Update weights to minimize Hessian approximated quantization errors

– AWQ: Scale salient weights (that are affected by activation most) to minimize output errors
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OPTQ (Frantar et al., ICLR 2023)

AWQ (Lin et al., arXiv:2306.00978)



Weight-Only PTQ for Memory-Efficient LLM Inference (2/2) 

• Accuracy preserved by “good” quantization techniques

• Performance improvements
– Develop custom CUDA kernel

– (Measured on A100 GPU)
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AWQ (Lin et al., arXiv:2306.00978)



PTQ for More Efficient LLM Inference (EMNLP 2023)

• Quantize weight (4-bit) AND activation (8-bit) together to enhance efficiency of LLMs
• Integer with denormal representation to overcome PTQ underflow for LLMs

– INT4 weight leads to high quantization errors due to underflow
– Small magnitude weights play important role as they are multiplied with activation

– Suggest a new number format to represent small values using a denormal state (dINT)
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: Underflow error
: Rounding error



Prior QATs for Transformer Decoder Models

• Successful W4-A4 quantization for Encoder-only/Encoder-Decoder models
• Noticeable accuracy degradation for Decoder-only models → Need improvements!
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Encoder-only Encoder-Decoder Decoder-only

(Wu, et al., ICML 2023)



QAT for Sub-4-bit LLM Inference (NeurIPS 2023)

• Investigated root causes of accuracy degradation for 
quantized decoder models: Error accumulation over tokens

• Proposed a novel KD method with token-based loss scaling 
to alleviate error accumulation and improve accuracy of 
fine-tuned quantized LLMs

• Improved accuracy of x8 or x16 compressed LLMs
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Encoder

Decoder



Summary

• Implementation of Large language models (LLMs) is cost-intensive, owing largely to 
their considerable demand for memory and computational power

• Efforts are increasing to advance quantization methods, aiming to optimize efficiency of 
LLM inference while maintaining model accuracy

– Post training quantization (PTQ)

– Quantization-aware training (QAT)

• Enhanced quantization techniques would unleash new opportunities for running large 
language models on edge devices

• References for our papers

– Enhancing Computation Efficiency in Large Language Models through Weight and Activation Quantization (EMNLP 2023)

– Token-Scaled Logit Distillation for Ternary Weight Generative Language Models (NeurIPS 2023)

15

https://arxiv.org/abs/2311.05161
https://arxiv.org/abs/2308.06744


Thank You!

Any Questions?
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