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Introduction
Over the past few years, embedded systems and machine
learning communities have come together to make AI ubiquitous
and available near the data source, unlocking many untapped
application areas that await development. As a result, hardware,
software, and research have changed extremely rapidly with
many recent releases of ML-enabled microcontrollers.
Consequently, many frameworks have been developed for
different platforms to facilitate the deployment of ML models and
standardise the process. With the Artificial Intelligence of Things
(AIoT) expected to grow exponentially over the next few years,
more researchers and companies are expected to enter the
research space. Although certain challenges of tinyML
deployment can be overlooked, which makes entering the field
challenging. For tinyML applications to flourish, it is important to
consider how to solve entry-level challenges. The challenges
below were experienced when deploying simple deep learning
models to a variety of microcontrollers. These include, but are not
limited to Syntiant TinyML Development Board, Sony Spresense
Main Board, and Raspberry Pi Pico4ML.
This poster reveals the often-overlooked challenges of tinyML
and emphasizes the importance of raising awareness within the
community. By addressing these issues, not only will the existing
tinyML community benefit, but it will also attract a broader range
of people. This will accelerate research in the field, pushing the
boundaries of edge AI further and faster than ever before.

Lack of Support on Development Boards

Community engagement is crucial for microcontrollers, small
devices used in IoT and automation systems. It offers significant
benefits:
1) Learning and education: Online forums and workshops

help users understand microcontrollers, encouraging their
adoption and expanding their application potential.

2) Collaboration: Open-source projects enable developers to
collaborate, resulting in faster software development and
more reliable applications.

3) Support: Community platforms provide troubleshooting
assistance, benefiting new users and complex projects.

4) Innovation: Sharing knowledge and ideas drives innovation
in microcontroller usage, advancing the field of IoT and
automation.

However, limited support for new boards can make development
challenging for new users and potentially impractical.

Choice of Sensors
Edge systems rely on sensors to collect data, with some capable
of processing inputs from multiple sources. However, the
availability of sensors depends on the hardware used.
The choice of sensors varies based on the problem at hand. For
instance, monitoring mental wellbeing may require numerous
sensors, while human activity recognition can be accomplished
with just an accelerometer. Many new edge devices come with
built-in sensors. The Arduino Nano 33 Sense, a popular
microcontroller, includes a variety of sensors in a compact form
factor (see table 1).
Opting for a board with built-in sensors ensures compatibility and
reduces footprint by eliminating the need for external sensors.
However, these built-in sensors are generally designed for
multiple applications. Specialized purposes like air quality
monitoring may require external sensors as boards rarely have
specific sensors pre-installed [1].

Available built-in sensors for development boards while 
highlighting the boards fully supported by TFLite.

Insufficient Labelled Data
Labelled data is essential for training supervised machine
learning models. Deep learning, a gradient-based learning
method, relies on labelled data to ensure accurate generalization
and adjust the model accordingly. However, obtaining cleaned
and labelled datasets is challenging.
Data labelling remains a labour-intensive task, usually performed
by humans. Although methods like semi-supervised learning can
leverage a subset of labelled data, they are most effective in big
data applications. Limited research exists on labelling data
directly on microcontrollers, with only one known attempt [2].
While not fully automated, this approach simplifies data collection
on target devices.

The Challenges Summarised
• Programming Language Choice: In many cases,

programming languages are not optional when developing on
microcontrollers. This influences the decision upon which
board to invest time into. Moreover, different programming
languages yield varying benefits such as compile time and
library availability.

• Lack of support on development boards: Development
boards are often released with limited tutorials and library
compatibility, resulting in low community engagement.
Therefore, the learning curve for a meaningful implementation
becomes steep, potentially causing a stagnation of the user
base.

• Neglect of preprocessing: When tinyML algorithms are
deployed, it can be common to neglect the shape of the input
data to the model. Feature extraction can be a resource- (and,
therefore, power-) consuming task requiring many
mathematical computations.

• Choice of sensors: Edge AI / tinyML systems typically
employ at least one sensor to collect data for inference.
However, the range of sensors to choose from, how they
might perform, and how to integrate them into the algorithm is
not always trivial enough to solve by trial and error. Sensors
play an integral role in the deployment of tinyML systems, and
navigating how to choose an efficient sensor for a particular is
no simple task.

• Insufficient labelled data: Data labelling is required for
supervised learning approaches, and obtaining such data can
be a prolonged task. This is especially prevalent for
multimodal sensor data.

Discussion
All these challenges must be considered and/or overcome before 
even designing an AI/ML model, which is considered the main 
challenge. This poses the question;

How do we work to solve these challenges?

By highlighting these areas that literature typically misses or at 
least, fails to mention will lead to a wider community 
understanding of how to design a tinyML system. Therefore, 
choosing the appropriate board, sensors, and input features for 
an optimised intelligent system, before considering the model 
itself. Expressing justification for the choices made when 
developing tinyML systems can influence others on which boards 
to use and create an inviting research space for others to join. 
Overall, this will increase community engagement across the 
tinyML research space, thus nurturing its exponential growth.

In conclusion, the fusion of edge computing and AI has the
potential to unlock numerous application areas, particularly in the
Internet of Things (IoT). However, deploying AI to
microcontrollers presents challenges discussed in this paper.
These challenges include programming language selection,
limited development board support, preprocessing neglect,
sensor choices, and insufficient labeled data. Addressing these
challenges enables researchers and developers to design more
efficient and effective tinyML systems for research and
commercial purposes. Solving these challenges benefits the
current edge intelligence and tiny machine learning (tinyML)
community, making edge AI research more accessible and driving
faster progress in pushing its boundaries.

Conclusion
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Programming Language Choice
When developing on microcontrollers, programming language
choice becomes limited to typically C++ or python.

• Memory and Resources: C++ optimizes memory usage
better for constrained microcontrollers, while Python may
have higher overhead.

• Performance: C++ is faster due to direct hardware access 
and compilation, vital for real-time tasks on microcontrollers.

• Language Features: C++ offers low-level control, while
Python prioritizes faster development and ease of use.

• Libraries and Ecosystem: C++ has extensive
microcontroller-specific libraries, while Python's offerings are
comparatively smaller but growing.

• File Size: C++ generates smaller binaries, advantageous for
microcontrollers with limited storage.

• Learning Curve: C++ is more complex, Python is beginner-
friendly.

The choice between Python and C++ for programming on a
microcontroller depends on performance needs, memory
constraints, available libraries, and developer experience. C++
provides control and efficiency, while Python offers faster
development but may use more resources.

Vs.

Neglect of Preprocessing

Preprocessing plays an important role in AI/ML on
microcontrollers, but it is often overlooked.
Feature engineering involves extracting key information from
sensor data using mathematical techniques. Traditional methods
like the Fourier transform (FT) can be resource-intensive due to
complex calculus. However, variations such as the Fast Fourier
Transform (FFT) have been developed, trading off precision for
low latency.
Emphasizing the importance of preprocessing can lead to more
effective and efficient deployments on resource-constrained
microcontroller platforms.

Figure demonstrating how preprocessing can over
encumber a typical microcontroller.
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