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What We’ll Cover

Introduction

— What/why is mmWave radar sensing?
— Why do we need target classification on the edge using mmWave radars?

The proposed target classification algorithm details. What is the novelty of this work?

Real-time implementation on Tl's 60GHz low-power mmWave radar IWRL6432

Performance results of the algorithm and the real-time implementation benchmarks

Summary and conclusions
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The mmWave Sensing

 The mmWave sensing typically refers to radar applications that operate in the 60GHz
and 77GHz frequency bands.

* Why radar now?
— Technological advances => smaller size, lower cost, higher performance
— Automotive remains a key market for these sensors

— New applications: Building surveillance, factory automation, robotics, automotive, in-cabin
sensing, and more!
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Need for Target Classification

Traditional applications leverage radar strengths in target detection and tracking.

Emerging applications require target classification as well:

Automotive Radar Road User Classification High Performance
In-Cabin Sensing Occupancy Detection and Classification High Performance, Low Power
Building Automation / Surveillance  Motion Classification (people vs pets, trees etc.) Low Cost, Low Power, Edge Processing
Elderly Care Fall Detection, Activity Classification Low Cost, Low Power, Edge Processing
Gesture Recognition Automotive Dash Board, Mobile Devices, Household Low Cost/ Low Power, Edge Processing
Appliances, Kick-2-Open (Automotive Boot opener)
« Radar classification can leverage the work done in the context of Vision Main focus
— Machine Learning architectures/frameworks can be re-used of this work

 However, the nature of the signal is different
— Vision: High spatial resolution. None or limited range/velocity resolution
— Radar: High range/velocity resolution. Limited spatial resolution
— Hence, intuition on feasibility, performance, and complexity has to be built from the ground up
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Resolution in Radar and p-Doppler Signatures

Radar images are very sharp in the range-velocity domain but blurred in the spatial domain

Range-Velocity Dimension Spatial Dimension
O TARGET :
—— Range resolution
y ’ Velocity resolution
=) Spatial resolution
o >
YV RADAR © All Weather
< — > Privacy
range X

« Radars’ native good velocity resolution can be used to capture the unique “velocity signature” of moving targets
« Different targets (bike, pedestrian, pet, drone, bird, car, etc.) can have different “signatures.”

« Can be used in target classification/ target filtering. 2
9 get ftering = m
The work in this tutorial relies _ _ - ange
v/ heavily on these Doppler signatures unique signatures
Main challenge: How do we create these signatures for KQ < ., [ j«:»T m
multiple objects concurrently, and how do we process them? -
—> range
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Proposed Solution for Target Classification

» The end-to-end processing chain to classify multiple target objects: The detection layer generates the point cloud. The
tracker layer is run to track multiple objects. Required features are created, and the classifier is run per track.
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Distinguishable features can be extracted for different target
classes. Here: upper and lower envelopes are given as examples.
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M-Doppler Generation

» Tracking and spectrogram generation based on referencing the radar cube by the track centroids are central to our focus.

|
[ I |
Group tracker NS : Track Centroid (Position) | Tracker iTrack Centroid (Velocity)
G, (n—1) : QOQQ : : :
' | I | |
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-ttrack centroid Scenario, 3 targets (3) Upper Envelope (D,,;) (P and H)
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For details: M. E. Yanik and S. Rao, "Radar-Based
Multiple Target Classification in Complex

Environments Using 1D-CNN Models," /EEE Radar . E . . . pe - - -
Conf., San Antonio, TX, USA, 2023, pp. 1-6 Frame ldx
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Feature Extraction — Improve Robustness

= |f a certain track has no associated points at some frames (it may exit from the scene or obscured by another track), the tracker may still
continue to track. In such scenarios, we should avoid updating the feature set because the extracted information will not be reliable.
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Classification Model

* |n the proposed 1D-CNN architecture:
= 2 blocks of 1D convolution, ReLU, and layer normalization layers are specified.
= We create 16 and 32 filters for the first and second convolutional layers (with a filter size of 3), respectively.
= To reduce the output of the convolutional layers to a single vector, a 1D global average pooling layer is added.
* To map the output to a vector of probabilities, a fully connected layer is specified with an output size of two (matching
the number of classes), followed by a softmax layer.

CNN Block 1 CNN Block 2 sl Blocks Lptiona) Processing time of the classifier
(7 3 G, 1> 3 | i = On ARM M4F core @160MHz
: 7 N i ||:7|‘7__‘—:‘_‘_—:“_—_._/‘ I . . .
o O S === _ = Per prediction call (i.e., per track)
i H|:H|’I_Fr_—_—_—“l : | ' [a) _ .
g | = = = 30-frame window
5 |l |8 § il i Sk
= g = 5 = R S5 = 2-layer CNN: 3ms
= @) = 1|y ':||H|: Ol | =1 1) = = .
S HI2|E s 3| g R = S R ?—a»S—a»E = 3-layer CNN: 15ms
S||&|s =R S = A - - R I oIS
NBE HIRE |l S 1B HE
S > 5 = A = A - S - .
a = S 3 ARG A P 3 — Memory required by the classifier
o — = S | . .
T i i (I A S = Internal buffer for computations + weights
g B -
\\ I | = 2-layer CNN: 5.7KB + 7.5KB = 13.2KB
{SETSESIEIIssssee ’ = 3-layer CNN: 13.4KB + 32.5KB = 45.9KB

= An optional block of 1D convolution with 64 filters, ReLU, and layer normalization layers (following the
first two blocks) is also added to compare the performance of 2 vs. 3 layers CNN models.
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Data Capture and Feature Set Summary

Input the ADC raw data Data statistics: Feature set statistics:
& = 310 scenarios in distinct = 2D p-Doppler maps
Point cloud: range, angle, Doppler environments. = 4 features (time sequence)
Tracker output: position, velocity. = Total 125816 frames (3.5hours). = 55079 Observations
: *& = From ~20 different human and = Block length: 30 frames
u-Doppler generation. numerous non-human targets. = 25448 human, 29631 non-human
;42
Data labeling (with synchronized videos). oot e oot 5 R4 date 001 ma . .
— — [} phasel_uman random walk run o - Various people and non-human objects
e —— ) e L # ) (s skt 004t (drone, different dogs, fans, trees,

..................

fHistRT_adc_data_0005.mat

phasel_outdoorpark_human_nonhuman_tests

plants, etc.) are available in the data.

phasel_sudharshan_test_vectorl G| gTruth_adc_data_0001.mp4
phasel_sudharshan_test_vector2 5| gTruth_adc_data_0002.mp4
phasel_two_human_random_walk_run E] gTruth_adc_data_0003.mp4

phase2_20220307_dan_test_vector G| gTruth_adc_data_0004.mp4

phase2_20220308_chris_test_vector E’ gTruth_adc_data_0005.mp4
phase2_20220309_ken_test_vector

phase2_20220323_muhammet_drone_data

TTTTTTT

phase2_20220324_dog_data_with_jackson
phase2_20220325_dog_data_with_angie
phase2_20220330_tree_data
phase2_20220401_dog_data_with_alec
phase2_20220412_indoor_plant_data
phase2_20220418_muhammet_frontyard_human_data

A labeling GUI is built in Matlab.

Model/train/evaluate the classifier
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Cross Validation and Performance Resﬁﬁs

» The 1st approach uses all the data mixed from different environments. Data split: 40% Train, 10% Validation, 50% Test.
* The 2nd approach reserves some folders completely for testing. The remaining data is used for training + validation

Approach 1

Test folders for different environments
Folder 1 Folder 2 Folder N

Training (%40)

Validation (%10)

Observation

Test (%50)

Approach 2

Test folders for different environments
Folder 1 Folder 2 Folder N

Training (%80)

Observation
Validation (%20)

The final classification error is
calculated with 5-fold cross-validation.

5-fold Mean Test Accuracy (With %50 of Total Data) 5-fold Mean Test Accuracy (With Reserved Data)

100
64 chirps, 128 azimuth points 64 chirps, 128 azimuth points
98 r

S

>

O

o

=

O

O

<C

92 b = El = 2-layers 1D CNN 92t =—B—2-layers 1D CNN
—H8—3-layers 1D CNN = © = 3-layers 1D CNN
90 * ' * 90 ' * '
2 2.5 3 3.5 4 2 2.5 3 3.5 4
Window Size (s) Window Size (s)
Approach 1 (All the data is mixed) Approach 2 (Reserved folders for test)
=N’ 5.fold Mean Test A With %50 of Total Dat ez Mean around
E g -fo eap es ccuracy( ith %50 o ' otal Data) 0.5m x 0.5m
—— 64 chirps, 128 azimuth points o target size
0 98 | 2-layers 1D CNN more SNR ] & g )
2 c 9
€3 <
- £ o>
n o g
T © 8
2g <
© S 92 '@';L-Doppler from centroid only
Q o =B :.-Doppler from mean around fixed target size %:1
% é 90 ' ' ' PEgas" Centroid
Window Size (s) LD

Summary: ~97% mean classification accuracy with only 3sec latency (2-layers 1D-CNN)

I
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Enable Edge Al — IWRL6432 Overview

IWRL6432: Cost and power-optimized
radar on a chip with analog (RF, IF), digital
front-end, and processing
(M4F+Accelerator) capability in one device.

3 RX

The target classification
algorithm discussed in
this work is implemented
on this tiny device to
create an edge Al solution.

2TX

S5MHz IF

Synth

i3 TEXAS
INSTRUMENTS

= Integrated transceivers : 3 Rx and 2 Tx. rave 5 and Arogspsystem | e | ot e
! l QsPI Serial flash interface
» |ntegrated frequency synthesizer: 57GHz to 64GHz & : : L]
| | SPI [~ interface
. §§ | Digital Fr CAN-FD Communication interface
u ProceSSIng: Y £ \ e el : (Decimat? filt E Eﬁul:f)fgr + opt For deb d Control/
» ARM Cortex M4F MCU @ 160 MHz v LT ] e l__“’*” il ilemmiiomn
» Radar hardware accelerator (HWA) @ 80 MHz w>—()—| ¥ e | N e
I I % i 51(;3&3 m m | | JTAGfordebug and
] MemOry: 1 .O MB RAM Inte aﬁmg:“o:;gt - ( ﬁy('m) i Ta‘i'r'n‘?nsEneg"i‘) i z (see Note) — -9_ development
| | (8OMHz ) [ o0 }—1—
u Interfaces: SPI, UART, I2C, QSPI’ GPIOS Y k PA I__—I : RF control processor :_f ___________________
--SOCC i | Il ﬁ(:\::n)/are) | LDOs
= Power: <100mW @ 10Hz (including classifier) X o e R o] e ser” || e
il I l oee Always ON low-power domain
= Package options: ' |
- Note: Up to 256 KB of L3 RAM can be shared with M4F ‘|m‘ (4);1@;2)

" ~6.45x6.45 mm FCCSP (0.5mm pitch)
= ~5x4.5mm WCSP (0.4mm pitch)

The entire real-time implementation is architected around
Cortex M4F and HWA and fits into the 1MB of total memory.

I
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Enable Edge Al — Implementation Detail

Detailed view of the signal processing chain on IWRL6432. Each block is implemented as a DPU and partitioned across HWA and M4F.

ADC samples
from radar
front end

HWA

Range DPU

Per chirp and
antenna:

- BPM Decoding,
- Range FFT

extraction for three tracking objects

CPU

’—CIE

A

HWA

p-Doppler comp. HWA 1

HWA HWA + M4F MAF MA4F + HWA
- DOA DPU . CFAR DPU Tracker DPU Micro Doppler DPU
Per range bin:
- Doppler FFT Range- CFAR Detection Micro Doool
Radar - Clutter removal azimuth Peak grouping Point > Group Tracker L tlcro Extlpp ;:-.r, I
- Azimuth and elevation FFT Interpolation in Tracker eac;rsiiﬁc;:'ggr:on’
- Sum/peak across Doppler range and azimuth
- Peak across elevation
Timing diagram example for m-Doppler computation and feature > to UART — to UART
» The entire end-to-end chain takes
T
| H et . only ~35ms for 3 tracks.
\Dopplercomp. WA 3 ~ = Each additional track requires an
time

Highly parallelized architecture
across processing cores to
improve processing efficiency.

Efficient utilization of the HWA
engine and EDMA channels is
critical to the implementation,
making the end-to-end chain work!

Note: See the next page for glossary.

additional ~3ms (tracker + classifier).

\

\ A A

Target ||Indices 3

Radar cube

onfig/Ctr

trl

Intefrupt

onfig/Ctrl

Inte]

HWA

M-Doppler Computation

on

Icro

Data In
EDMA i

HWA HWA

A 4

Doppler
Spectra

Data Out
EDMA

Config/Ctrl

micro

VY

Config,

>_To Host
over UART

Classifier N —/
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Enable Edge Al — Software Architecture

Application and
libraries

Target Tracking and Classification Application
Point Clqud Tracker p-Dopp!er Featu.re
Generation Generation Extraction

Protocol stacks
And Middleware

Drivers and
HAL

Board Peripheral
Drivers

SOC Peripheral

. mmWaveLink
Drivers

Driver Porting Layer (DPL)

FreeRTOS Kernel No RTOS

0OS
Kernel

FreeRTOS
POSIX

Tools

SDK Tools

(Flashing,
Boot, ...)

Tl Resource
Explorer
(TIREX)

SysConfig

TI CLANG
Compiler

Code

Composer
Studio (CCS)

ARM M4F + HWA1.2 + SOC peripherals + EVM peripherals

XWRL6432

Available on Tl.com!
= Software;: MMWAVE-L-SDK
= Evaluation module: IWRL6432BOOST

=

X86 Host

(Windows / Linux)

Glossary

Hi

Radar Academy TIREX

RPMF: Radar Power
Management Framework
DPM: Data Processing
Management

DPC: Data Processing Chain
DPU: Data Processing Unit
SOC: System-on-Chip

ghlights:

Open Source OS — FreeRTOS
Simplified, low memory, low
latency optimized drivers
Pre-integrated mm\Wave
components.

Plug n Play middleware

CCS

[ @ §p [(“ELOS]

I
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https://www.ti.com/tool/MMWAVE-L-SDK
https://www.ti.com/tool/IWRL6432BOOST

Real-Time Demo — y-Doppler Generation

* In the real-time demo on IWRL6432, u-Doppler spectrograms from multiple tracks can be generated and streamed.
= Different ML technlques can be explored using this information without putting effort into lower-level processing.

. = The micro-Doppler maps of a
e — human vs. non-human object

& Point Cloud

Frame: 256 (255)

Detection Points: 6 (4)

Target Count: 1

Rx Buffer, bytes: 1208 (10584)

Micro Doppler, m/s
& ° ~

CPU, ms: 24.88 (25.38)
UART Tx, ms: 12.12 (12.40)
Device Load, %: 75.8 (77 .4)

E 5
UART Rx, ms: 22.59 (277.14) g
GUI, ms: 6.58 (296.06)
Host Load, %: 59.8 (736.8) o ! rame number N L‘
Temp RFE, C: 39 (39) TIDO, 1 FeaturesTIDO
: ,,./E%\ » This feature can also help in
: n o
; \ M more use cases (pose

estimation, fall detection, etc.)
when privacy is important.

60.5000

chchchchch
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Summary — Available on Tl.com!

Summary: Using the multi-target tracker (MTT) integration, a robust y-Doppler map generation method is built to support
classifying multiple objects concurrently (to support more realistic scenarios) with reduced complexity.

» Reduced the complexity of
the classifier with hand-
crafted feature extraction.

= Maijority of the existing works
use P-Doppler maps directly.

* Enabled simultaneous
tracking and classification of
multiple targets in real-
world environments.

= Maijority of the existing works
do not address such multi-
object realistic scenarios.

Important facts:
» The machine learning model has never

seen this specific scenario in training.

Satistics

phase2 20220309 ken test vecta
Test #5

Frame #1, (1)
Detection Points: 70 (0, 0)
Target Count: 0

Aved,.| Avefrr  GFR PDMig

Chirp Configuraton

;(J' p Perarmeter (Unas) j Velue

ul
fStan fregquency (Gha) 61.2500
Eiope (MHzius) 769910
:'.«'amal:-s per chip 256
Chaps per frame 38¢
Frame duration (ms) 100
‘,';‘mmlrc rae (Msps) 12,5000
Banawcth (GHz) 15358
Jange rasoution (m) 00877 |
[Veocty reschtion (mis) 0.180¢
Joumber of Rx (MVO)
!\L"I)el of Tx (MMO) 3 |

Control
e Step

Gating and Associaton

>
st
'
=
= 3P < -
’ -~ * -~
~ -~
P .
~ -
~
C 2 1 K ~ - -~
-~ N
£ -~ ~ & -~
ey CLEA T ) A L
0 1 4 5 5 -1 2 -1 o 1 2 3 4 5
X m X, m
Dopaler Map Ground Truth
|
10} |
|
|
ar |
|
= I
3. |
£ |
?g I
|
8 {
' '
2t |
|
Ll
0 |
5 10 0 10
“ear
Doppler, m/s
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Thank You!
Questions?

@D: Asia 2023
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