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Summary

• Uniform-precision neural network quantization has gained popularity since it 
simplifies densely packed arithmetic unit for high computing capability. 

• However, it ignores heterogeneous sensitivity to the impact of quantization errors 
across the layers, resulting in sub-optimal inference accuracy. 

• This work proposes a novel neural architecture search called neural channel 
expansion that adjusts the network structure to alleviate accuracy 
degradation from ultra-low uniform-precision quantization.

• The proposed method selectively expands channels for the quantization 
sensitive layers while satisfying hardware constraints (e.g., FLOPs, PARAMs).

• We demonstrate that the proposed method can adapt several popular networks’ 
channels to achieve superior 2-bit quantization accuracy on CIFAR10 and 
ImageNet. 

• In particular, we achieve the best-to-date Top-1/Top-5 accuracy for 2-bit 
ResNet50 with smaller FLOPs and the parameter size.
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Motivation of the Research 
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Related Work

Neural-Net adaptation for accurate DNN quantization 

Preliminary Research on Capacity Expansion[1] Channel Splitting to Reduce 
Dynamic Range of Weights[2]

[1] Asit Mishra, Eriko Nurvitadhi, Jeffrey J Cook, and Debbie Marr. Wrpn: Wide reduced-precision networks. In International Conference on Learning Representations, 2018. 
[2] RitchieZhao, YuweiHu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network quantization without retraining using outlier channel splitting. In International Conference on Machine 
Learning, pages 7543–7552, 2019. 

However, above methods are not automatic and not plausible on the ultra-low precision.
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Neural Channel Expansion
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Analysis on the Impact of Channel Expansion to Quantization 

Quantization affects to the dynamic range of the weights

• Quantization applied to a given network substantially increases the dynamic 
range of activation, hindering successful DNN quantization 

• Unlike straightforward capacity to all layers as described in WRPN, we 
selectively expand layers so we can keep lower PARAMs while preserving 
accuracy.
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Analysis on Search Space of Neural Channel Expansion

The flexible search space of NCE can lead efficient search compared to TAS

• When we sample the network from the search space randomly, architecture 
searched from NCE and TAS, then the accuracy of the networks are 
compared. NCE shows the higher accuracy, it means that search space and 
the method is superior to others.
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Analysis on Channel Selection Preference of NCE

Gradient shows the preference on the larger channel numbers

• Architecture parameters associated to large channel get negative gradient 
at the early stage of training, but the demand is decreased as training goes.
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Experimental Results

Benchmark with other SOTA models
Impact of Threshold

On the various precision



© 2023 Nota Inc. All Rights Reserved. 10

Analysis on Comparison of Network Structures

NCE balances the reduction and expansion of the ResNet50 
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Conclusion

• In this work, we propose a novel approach that explores the neural network 
structure to achieve robust inference accuracy while using the simple 
uniform-precision arithmetic operations.

• Our novel differentiable neural architecture search, called neural channel 
expansion, employs the search space that can shrink and expand the 
channels.

• More sensitive layers can be equipped with more channels while the overall 
resource requirements (e.g., FLOPs and PARAMs) are maintained. 

• We demonstrate that the proposed method can achieve superior 
performance in ultra-low uniform-precision quantization for CIFAR10 and 
ImageNet networks. 
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