
tinyML® Research Symposium
Enabling Ultra-low Power Machine Learning at the Edge

March 27, 2023



Fused Depthwise Tiling for Memory Optimization
in TinyML Deep Neural Network Inference

Rafael Stahl, Daniel Mueller-Gritschneder, Ulf Schlichtmann

Technical University of Munich

School for Computation, Information and Technology

Chair for Electronic Design Automation

Burlingame, 27th of March 2023

This work was supported in part by the German Federal Ministry of Education and 
Research (BMBF) within the project Scale4Edge under contract no. 16ME0131.



� Focus: Inference

� Improves:
� Communication demand
� Latency
� Data privacy

� Many application suitable for extreme low-power: tinyML
� Keyword Spotting
� Visual Wake-up
� Anomaly Detection
� Radar Gesture Detection

Machine Learning on Edge Devices

2

Cloud

Edge



� Power usage
� Cost

� Reducing memory with accuracy trade-off:
� Quantization
� Pruning
� Network Architecture Search (NAS)

Challenge: Memory

3

Memory usage



Memory requirements are dominated by 
few intermediate buffers

Æ Fused Tiling

Intermediate Buffers

4

Magic Wand Text Classification

PoseNet SSDLite



� Loop transformation to exploit spatial and temporal locality
� Typically employed for performance optimization

Loop Tiling

5Umesh, Sumanth, and Sparsh Mittal. "A survey of techniques for intermittent computing." Journal of Systems Architecture 112 (2021): 101859.



Tiling:
� Compute large intermediate buffer in multiple tiles

Fusion:
� Operator fusion decouples their lifetime

Æ Lifetimes of split large buffers do not overlap
Æ Their storage buffers may overlap
Æ Memory reduction

Fused Tiling

6



� Operator fusion through spatial locality of convolution
� Introduces overlap from kernel size

� Does not support operations with large input dependencies
� Fully connected
� Convolutions with very large kernel sizes

Fused Feature Map Tiling (FFMT)

7

Conv(3x3, ch=8)

Conv(3x3, ch=2)



� Allows fusion of two operations with large input 
dependencies

� Accumulates partial sum in second output
� Requires Merge operation

� New tiling opportunities
� No significant run time overheads

Fused Depthwise Tiling (FDT)

8



Split by feature maps instead of neurons

FDT for Convolutions

9

Conv(3x3, ch=8)

Conv(3x3, ch=2)



� Determines where, and how to apply fused tiling
� Memory-aware scheduling
� Memory buffer layout planning
� Path discovery

End-to-end Deployment Flow

10



� Finds an optimized sequence of operations (path) for fused tiling
� Intermediate buffers and operations are matched according to blocks

Untiled

Path Discovery

11



Path Discovery – FDT 

12



Path Discovery – FFMT 

13



� Implemented in Apache TVM
� Suitable for complex transformation passes

� Evaluated seven quantized models in RISC-V RV32GC
� Memory usage from sections of compiled binary
� Performance estimation from multiply ops of optimized graph

� To appear open source at: https://github.com/tum-ei-eda/moiopt

Implementation

14

https://github.com/tum-ei-eda/moiopt


Results

15



� Applied Fused Depthwise Tiling to DNN graphs for memory optimization
� Built end-to-end deployment flow for evaluation

Æ Reduces memory usage where previously not possible
Æ Adds alternative solution where existing tiling causes too much performance overhead

Summary

16



17



Copyright Notice
This presentation in this publication was presented at the tinyML® Research Symposium (March 27,2023). 
The content reflects the opinion of the author(s) and their respective companies. The inclusion of 
presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the 
authors and their respective companies and may contain copyrighted material. As such, it is strongly 
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions 
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org


