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An example of a state-of-the-art
fully-integrated keyword-spotting chip
[JSSC’20_GiraldoVerhelst]: 91% accuracy, 10 words à 16.1uW…
• …but a decade-long lifetime on a coin cell battery* would require <1uW

3* SR927: 60mAh, 1.55V, 9.5mm x 2.7mm
** Bar chart excludes the 1.2uW of the “sound detector” block (including its leakage) 
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Frontend feature extractor is the bottleneck, relative to the backend classifier
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Frontend feature extractor:
digital vs analog paradigms
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Digital paradigm:
ADC-DSP

Analog paradigm:
ASP-ADC
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Early examples for audio:
[83JSSC_BuiMichel]
[05TBME_Sarpeshkar]

[15SSCSMag
_VerhelstBahai]
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Digital vs analog paradigms:
in principle

5Analog should be more power-efficient than digital
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N*PADC,FR

PADC,NR
PASP <  PDSP

PASP-ADC <  PADC-DSP

N*PADC,FR <  PADC,NR

[15SSCSMag_VerhelstBahai]
[98NeuralComp_Sarpeshkar]
[90ISCAS_Vittoz]
[85ProcIEEE_Hosticka]

Digital
paradigm

Analog
paradigm

Audio
Nyquist rate
= 8 kS/s

[05TBME
_Sarpeshkar]

Audio
Feature rate
= 100 S/s

SNR < 50dB

SNR < 50dB

<80



Digital vs analog paradigms:
in practice, for audio feature extractors

6Analog is indeed more power-efficient than digital

12x

ADC: [VLSI’18_BadamiVerhelst]
DSP: [ESSCIRC’21_ZhuLu]

[JSSC’21_YangSeok]
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Analog audio feature extraction can be
more power-efficient than digital, but…

…it does suffer, significantly, from variability;
…however, jury is still out as to whether this is important.



General architecture
of analog audio feature extractor

8The filterbank is a critical block
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• Nfilters
• fmin
• fmax
• Dist. of fc’s
• Q
• Dist. of Q’s
• Filter order



Architectural parameters of filterbank: Nfilters
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Small: 4

Large: 64

𝐏𝐟𝐢𝐥𝐭𝐞𝐫𝐛𝐚𝐧𝐤
∝ 𝐍𝐟𝐢𝐥𝐭𝐞𝐫𝐬
to first order

These are 
mathematical 
responses



Architectural parameters of filterbank: fmax
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Small: 250Hz

Large: 10,000Hz

𝐏𝐟𝐢𝐥𝐭𝐞𝐫𝐛𝐚𝐧𝐤
∝ 𝐟𝐦𝐚𝐱
for gm-C filters
in weak inversion, 
which audio filters 
are in

These are 
mathematical 
responses



Architectural parameters of filterbank: Qfilter
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Small: 0.2

Large: 60

𝐏𝐟𝐢𝐥𝐭𝐞𝐫𝐛𝐚𝐧𝐤
∝ 𝐐𝐟𝐢𝐥𝐭𝐞𝐫
for gm-C filters 
[18Tsividis_SSCSMAG]

These are 
mathematical 
responses



State-of-the-art analog audio feature extractor chips
in terms of architectural parameters
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Large spread, although end task is the same—KWS
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Nfilters sweep

13Can reduce Nfilters by 2.4x from 24 to 10

Red: “typical” choice
Green: proposed “tiny” choice

𝐏𝐟𝐢𝐥𝐭𝐞𝐫𝐛𝐚𝐧𝐤
∝ 𝐍𝐟𝐢𝐥𝐭𝐞𝐫𝐬

This is simulation, not measurement:
• MATLAB frontend feature extractor [custom]
• MATLAB backend neural network [18ICAASP_TangLin]
• Google Speech Commands Dataset, 10 keywords



fmax sweep

14Can reduce fmax by 3.5x from 7kHz to 2kHz

Red: “typical” choice
Green: proposed “tiny” choice

𝐏𝐟𝐢𝐥𝐭𝐞𝐫𝐛𝐚𝐧𝐤
∝ 𝐟𝐦𝐚𝐱

This is simulation, not measurement:
• MATLAB frontend feature extractor [custom]
• MATLAB backend neural network [18ICAASP_TangLin]
• Google Speech Commands Dataset, 10 keywords



Qfilter sweep

15Can reduce Qfilter by 4x from 8 to 2

Red: “typical” choice
Green: proposed “tiny” choice

𝐏𝐟𝐢𝐥𝐭𝐞𝐫𝐛𝐚𝐧𝐤
∝ 𝐐𝐟𝐢𝐥𝐭𝐞𝐫

This is simulation, not measurement:
• MATLAB frontend feature extractor [custom]
• MATLAB backend neural network [18ICAASP_TangLin]
• Google Speech Commands Dataset, 10 keywords



Comparison between
typical and tiny filterbanks
Frequency responses 10-KWS accuracy and relative power

1633.6x power savings for 1.8% acc penalty

typical tiny



Intuition?
…observe typical vs tiny spectrograms
typical tiny

17Scaling down the filterbank preserves the essential “features”



Summary
• Analog audio feature extraction is a power-efficient paradigm that is re-

gaining interest in the integrated circuit design community.

• But there is currently little consensus on how to set its architectural 
parameters, namely those of the filterbank.

• And we show that there is a lot of opportunity to scale down the 
filterbank save power while maintaining KWS accuracy.

• In particular, 33.6x power savings in filterbank for 1.8% downstream acc penalty.

• This research is just a first, and small step…
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Future work
• Investigate effect of analog non-idealities on KWS accuracy

• How low can the filter SNR be pushed?
• How much filter nonlinearity be tolerated?

• Zoom out to system-level
• In addition to filterbank, consider microphone, amplifier, envelope 

detectors, feature-rate ADCs, and neural network

• Repeat using a contemporary, state-of-the-art neural network
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Questions?
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