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Possible Solution

Approximate 
Computing
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Benefits of Approximate Computing
• Approximate computing methods trade some 
accuracy for improved performance

• Approximate multiplication
• Introduce error for specific input combinations
• Simplified logic design

• Analog computing
• Low-cost multiply-accumulate
• Reduced memory movements

• Stochastic computing
• Randomized bit streams
• Single-gate multiplication and addition
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Training for Approximate Computing
• Approximate computing introduces error

• Approximate multiplication
• Error for certain input combinations
• Uneven error curve

• Analog computing
• Physical variations
• Analog-to-digital converter limits 

accumulation range and precision

• Stochastic computing
• Random bit stream error
• Non-linear accumulation
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Training for Approximate Computing
• Approximate computing errors are not 
modeled in floating/fixed-point training
• Inaccurate representation
• Random multiplication error
• Non-linear addition

• Approximate computation needs to be 
modeled during training
• Inferencing using a fixed-point model reduces 

accuracy
• Approximate computing needs to be modeled 

in both forward and backward pass
• Not modeling approximate computing drops 

accuracy by 11-57%
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Forward Pass Modeling
• Accurate modeling of approximate computing 
is expensive
• CPU/GPUs do not have native operators for 

approximate computation
• Requires software simulation
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Emulation Cost Estimation

Approximate Multiplier Simulation

>86 instructions!



Backward Pass Modeling
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• Some approximate computation methods 
introduce non-linearities in dot products
• Stochastic OR adder performs 𝑎 + 𝑏 − 𝑎𝑏
• Analog computing is limited by the range of 

analog-to-digital conversion 

• Modeling non-linear accumulation is expensive
• Gradients w.r.t to addition need to be computed
• Additions need to be broken up to model 

accurately
• Breaking up additions increase runtime by >100X
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Overview
• Methodology

• Backward pass - approximate proxy activation
• Forward pass - error injection + fine tuning
• Memory management - gradient checkpointing

• Results
• Accuracy impact
• Runtime impact
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Backward: Activation Proxy Modeling
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• Modeling approximate computing in the 
backward pass is expensive
• Error profile is not a smooth function
• Modeling non-linearity requires breaking up 

additions

• Small gradient error does not impact 
convergence 

• Approximate non-linearity using an activation 
function
• Cheap to implement (point-wise function)
• Allows usage of optimized backward functions
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Forward: Error Injection
• Output error is a function of output value

• Average error: modified activation function
• Random error: error injection

• Replace accurate modeling with error 
injection
• Fit error profile to polynomial functions
• Calibrate error profile during training

Conv/Linear accurate 
modeling forward

Accurate Modeling

Conv/Linear forward

Error injection forward

Error Injection

Activation calibration forward

Activation forward
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Gradient Checkpointing
• Activation proxy and activation calibration add 
computation nodes during training
• Increases memory requirements
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Gradient Checkpointing
• Activation proxy and activation calibration add 
computation nodes during training
• Increases memory requirements

• Use gradient checkpointing to recompute the 
layers during backward pass

• Reduces memory requirements with minimal 
performance costs
• Added layers are point-wise

• Allows bigger batch sizes for large models
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Results
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• Evaluation: 
• Platform: PyTorch, single RTX 3090
• TinyConv/Resnet-tiny CIFAR-10
• ImageNet Resnet-18

• Our improvements reduce training runtime by 
4.6X to 250X

• Enables training large models which are 
previously difficult/impossible to train 
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Conclusion
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• Improve training performance for approximate computing hardware

• Use activation proxies to approximate non-linearities in the backward pass

• Use error injection and fine tuning in the forward pass to reduce expensive emulation and 
retain accuracy

• Use gradient checkpointing to remove memory overhead of the added computation

• Reduce end-to-end training time by 4.6X to 250X

• Allow training of large models for approximate computing
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