
tinyML® Research Symposium
Enabling Ultra-low Power Machine Learning at the Edge

March 27, 2023

Training Neural Networks for
Execution on Approximate Hardware
SPONSORED BY: DARPA, ONR

TIANMU LI , SHURUI LI , PUNEET GUPTA

Limits of Edge Machine Learning
Energy
Latency
Privacy

Edge
Inference

High Model Complexity

10s-100s of MBs

1s-10s GOPS

Non-Real Time Performance

10s-100s of ms

Memory
constraints
energy and
latency

3

Possible Solution

Approximate
Computing

Images: Freepik.com

Benefits of Approximate Computing
• Approximate computing methods trade some
accuracy for improved performance

• Approximate multiplication
• Introduce error for specific input combinations
• Simplified logic design

• Analog computing
• Low-cost multiply-accumulate
• Reduced memory movements

• Stochastic computing
• Randomized bit streams
• Single-gate multiplication and addition

4

1101111101 (0.8)

1010101100 (0.5)

1000101100 (0.4)

0010010010 (0.3) 1010111110 (0.7)

Accurate

Approximate

[1]

[1] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading Accuracy for Power with an Underdesigned Multiplier Architecture,” in Proc. IEEE/ACM International Conference on VLSI Design, 2011

Training for Approximate Computing
• Approximate computing introduces error

• Approximate multiplication
• Error for certain input combinations
• Uneven error curve

• Analog computing
• Physical variations
• Analog-to-digital converter limits

accumulation range and precision

• Stochastic computing
• Random bit stream error
• Non-linear accumulation

5

[1] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading Accuracy for Power with an Underdesigned Multiplier Architecture,” in Proc. IEEE/ACM International Conference on VLSI Design, 2011
[2] Wan, W., Kubendran, R., Schaefer, C. et al., “A compute-in-memory chip based on resistive random-access memory”, Nature 608, 504–512, 2022

1101111101 (0.8)

1010101100 (0.5)

1000101100 (0.4)

0010010010 (0.3) 1010111110 (0.7)

[1]

[2]

Training for Approximate Computing
• Approximate computing errors are not
modeled in floating/fixed-point training
• Inaccurate representation
• Random multiplication error
• Non-linear addition

• Approximate computation needs to be
modeled during training
• Inferencing using a fixed-point model reduces

accuracy
• Approximate computing needs to be modeled

in both forward and backward pass
• Not modeling approximate computing drops

accuracy by 11-57%

6

0%

20%

40%

60%

80%

100%

Approximate
Multiplication

Analog
Computing

Stochastic
Computing

Accuracy Without Modeling
With Model Inference Only

-11%
-20% -57%

Forward Pass Modeling
• Accurate modeling of approximate computing
is expensive
• CPU/GPUs do not have native operators for

approximate computation
• Requires software simulation

7

Multiplication Addition

Floating Point 0.5 (fused) 0.5 (fused)

Stochastic Computing 64 (unrolled)
2 (packed)

64 (unrolled)
2 (packed)

Approximate Multiplication 86 1

Analog Computing 1 9

Emulation Cost Estimation

Approximate Multiplier Simulation

>86 instructions!

Backward Pass Modeling

8

• Some approximate computation methods
introduce non-linearities in dot products
• Stochastic OR adder performs 𝑎 + 𝑏 − 𝑎𝑏
• Analog computing is limited by the range of

analog-to-digital conversion

• Modeling non-linear accumulation is expensive
• Gradients w.r.t to addition need to be computed
• Additions need to be broken up to model

accurately
• Breaking up additions increase runtime by >100X

OR
10011001 (0.5)
01010101 (0.5)

11011101 (0.75)

𝑓 𝑎, 𝑏 = 𝑎 + 𝑏 𝑑𝑓
𝑑𝑎 = 1

𝑓 𝑎, 𝑏 = 𝑎 + 𝑏 − 𝑎𝑏
𝑑𝑓
𝑑𝑎 = 1 − 𝑏

1.E+0 1.E+1 1.E+2 1.E+3 1.E+4

FP16

Stochastic Computing

Resnet-18 Training Runtime (h)

Overview
• Methodology

• Backward pass - approximate proxy activation
• Forward pass - error injection + fine tuning
• Memory management - gradient checkpointing

• Results
• Accuracy impact
• Runtime impact

9

Backward: Activation Proxy Modeling

10

• Modeling approximate computing in the
backward pass is expensive
• Error profile is not a smooth function
• Modeling non-linearity requires breaking up

additions

• Small gradient error does not impact
convergence

• Approximate non-linearity using an activation
function
• Cheap to implement (point-wise function)
• Allows usage of optimized backward functions

Conv/Linear backward

Activation proxy
backward

Approximate
multiplication backward

Approximate
addition backward

Activation ModelingAccurate Modeling

Forward: Error Injection
• Output error is a function of output value

• Average error: modified activation function
• Random error: error injection

• Replace accurate modeling with error
injection
• Fit error profile to polynomial functions
• Calibrate error profile during training

Conv/Linear accurate
modeling forward

Accurate Modeling

Conv/Linear forward

Error injection forward

Error Injection

Activation calibration forward

Activation forward

11

Gradient Checkpointing
• Activation proxy and activation calibration add
computation nodes during training
• Increases memory requirements

12

Conv/Linear forward

Error injection
forward

Activation calibration
forward

Activation forward

Error Injection Backward

Conv/Linear
backward

Activation calibration
backward

Activation backward

Buffer

Buffer

Buffer

Forward Backward

Gradient Checkpointing
• Activation proxy and activation calibration add
computation nodes during training
• Increases memory requirements

• Use gradient checkpointing to recompute the
layers during backward pass

• Reduces memory requirements with minimal
performance costs
• Added layers are point-wise

• Allows bigger batch sizes for large models

13

Conv/Linear
forward

Error injection
forward

Activation
calibration forward

Activation forward

Error Injection Backward
with Checkpointing

Conv/Linear
backward

Activation
calibration backward

Activation backward

Buffer

Activation
calibration forward

Activation forward

Forward Backward

Results

14

• Evaluation:
• Platform: PyTorch, single RTX 3090
• TinyConv/Resnet-tiny CIFAR-10
• ImageNet Resnet-18

• Our improvements reduce training runtime by
4.6X to 250X

• Enables training large models which are
previously difficult/impossible to train

0%
20%
40%
60%
80%

100%

Top-1 Accuracy
Without Improvements With Improvements

TinyConv Resnet-tiny Resnet-18

1.E+0

1.E+1

1.E+2

1.E+3

1.E+4

Approximate
Multiplication

Analog
Computing

Stochastic
Computing

Tr
ai

ni
ng

 R
un

tim
e

(h
)

End-to-end Training Runtime (Resnet-18)
Without Improvements With Improvements

Conclusion

15

• Improve training performance for approximate computing hardware

• Use activation proxies to approximate non-linearities in the backward pass

• Use error injection and fine tuning in the forward pass to reduce expensive emulation and
retain accuracy

• Use gradient checkpointing to remove memory overhead of the added computation

• Reduce end-to-end training time by 4.6X to 250X

• Allow training of large models for approximate computing

Copyright Notice
This presentation in this publication was presented at the tinyML® Research Symposium (March 27, 2023).
The content reflects the opinion of the author(s) and their respective companies. The inclusion of
presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the
authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org

