
tinyML® Research Symposium
Enabling Ultra-low Power Machine Learning at the Edge

March 27, 2023



MEMA Runtime Framework
Minimizing External Memory Accesses for TinyML Devices

Andrew Sabot
Vikas Natesh

2



Why TinyML?

Tiny machine learning (TinyML) applications include person detection, keyword 
spotting, and anomaly prediction.

Devices ranging from industrial sensors to mobile phones can benefit from:

● Lower latency due to local computation
● Increased privacy as data is kept local
● Decreased reliance on network connectivity
● Improved energy consumption from reducing external communication

3Screenshot from tinyML Talks: Constrained Object Detection on Microcontrollers with FOMO



MEMA Overview

● The MEMA Runtime Framework aims to facilitate the deployment of efficient 
inference runtimes on power-constrained devices

● MEMA considers hardware limitations (e.g., local memory, register count) and 
problem sizes when analytically deriving runtime schedules that minimize 
data movement

● We illustrate the framework using matrix multiplication (MM), which is 
commonly used in neural networks (e.g., for convolutions)

4



Characterizing Hardware

● Roofline model defined by hardware characteristics of each platform:
○ Peak throughput (e.g., FP32 operations)
○ Peak memory bandwidth

● Two performance regimes:
○ Memory-bound (left of ridge point)
○ Compute-bound (right of ridge point)

● Benefits of reducing IO for these regimes
via runtime scheduling:

○ Memory-bound: increase throughput
○ Compute-bound: reduce energy consumption

Ridge Points

5



For MEMA analysis, we:

1. Identify device characteristics (e.g., memory hierarchy and register count)
2. Enumerate possible tile sizes and streaming strategies
3. Determine which kernels are applicable to the tile sizes
4. Using tile sizes and kernel choices, evaluate loop order IO requirements
5. Select loop order with the lowest IO requirements

Note: our example is for MM, but this methodology may be applied to other 
operations with static loop bounds (e.g., tensor contraction)

MEMA Analysis of MM for Hardware

6



We illustrate two general strategies to improve tiled matrix multiplication (a):

(b) Local accumulation to reduce IO requirements
(c) Increasing local input data to increase the amount of computation

We can apply both in balancing IO and computation.

Tile Sizes and Data Streaming Strategies

7



Loop Order Selection

Matrix multiplication can be performed using any order of M, N, K.

However, depending on the problem sizes (e.g., with very skew matrices), there 
may be more reuse opportunities in specific dimensions.

8



Loop Order IO

We can derive the needed IO for each loop order:

9



Hardware Evaluation

We considered three ARM platforms:

● Arduino Nano 33 BLE (ARMv7E-M Cortex-M4)
● STM32F767ZI Nucleo (ARMv7E-M Cortex-M7)
● Raspberry Pi 4 Model B (ARMv8-A Cortex-A72)

Performance metrics for evaluation:

● Computation throughput (FLOPS)
● External memory IO (bytes)
● Energy consumption (millijoules)

10



Evaluation workloads consist of dense MMs for layers of representative neural network models. 
Matrices and matrix dimensions were obtained from:

● MLPerf Tiny Inference Benchmark
○ Includes tasks such as visual wake words, image classification, etc.

● Deep Learning Matrix Collection (DLMC)
○ Includes transformer models

We compare to existing libraries:

● Arm Performance Libraries (ARMPL)
○ Standard core math libraries for Arm hardware

● Arm Compute Library (ARMCL)
○ Optimized low-level machine learning functions for Cortex-A

● CMSIS-NN
○ Optimized neural network kernels with support for digital signal processing units

Evaluation Workloads and Comparisons

11



Evaluations: DRAM IO

MEMA matches or exceeds the performance of existing libraries while reducing 
the total IO required

12



Evaluations: Throughput

MEMA kernels achieve higher throughput for both FP32 and fixed-point Q15 MM

13



Evaluations: Energy Consumption

Additionally, we observe significant reductions in energy consumption

14



Conclusion

● The MEMA Runtime Framework enables significant improvements in both 
throughput and energy consumption for real-world hardware

● These improvements can enable more powerful applications and longer 
battery runtimes for devices in the future

● Future work includes integrating automatic polyhedral analysis and additional 
kernel generation strategies

15



Copyright Notice
This presentation in this publication was presented at the tinyML® Research Symposium (March 27, 2023). 
The content reflects the opinion of the author(s) and their respective companies. The inclusion of 
presentations in this publication does not constitute an endorsement by tinyML Foundation or the 
sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the 
authors and their respective companies and may contain copyrighted material. As such, it is strongly 
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions 
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org


