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Challenge: ViTs Lack of Inductive Bias

• CNN: Features are locally aggregated

→ Nearby features are generally more related

• ViT: Computes patch-wise correlation

→ No assumption on feature relationships

ViTs need dedicatedly designed 

data augmentation
>10% accuracy change on ImageNet when using different 

data augmentations [A. Steiner, TMLR’22]
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Limitation of Existing Data Augmentation 
Techniques 

• Limitations of CNN-based data augmentations

– Limited diversity between patches (blue)

– Meaningless patches (red)
Image-wise

Augmentation
Region-wise
AugmentationOriginal Image
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Importance of Patch-aware Augmentation

• Setting

– Vanilla: Original color jitter

– SP: Same augmentation within each patch 

– DP: Different augmentation within each patch  

DeiT-Small@ImageNet 

Patch-awareness matters
SP achieves 0.16%~0.28% higher accuracy than DP/vanilla
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Enabler 1: Patch-aware Augmentation

• Our answer: Avoid drastic changes in spatial 
information 
– Preserve key features in the patch 
– Maintain Inter-patch relationships

• Proposed six patch-aware augmentation techniques
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Enabler 2: Attention to Intensity Mapper 

• Challenge: How to guide augmentation intensity 

with attention map?

• Our solution: a three-stage pipeline 

– Select a representative attention map: Enabler 2-1

– Preserve high-attention patches: Enabler 2-2 

– Optimize attention to intensity mapping: Enabler 2-

3
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Enabler 2-1: Analysis on Attention Map

• Certain attention maps can better identify 
the object in the image 

Visualization of DeiT-Small’s attention maps at different layers 
Layer 1 Layer 12

High value patches correlates well with 
the location of the object

Row-wise Summation Attention Map
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Enabler 2-1: Analysis on Attention Map

• Given different inputs, such attention maps 
appear at same layer in the same ViT model 

We use this attention map in AugViT

Visualization of DeiT-Small’s attention maps at different layers 

Layer 1 Layer 12
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Enabler 2-2: Insights on Augmentation Intensity

• Setting 

– Vanilla: Image-wise augmentation in [H. Touvron, ICML’21]

– Uniform: Augment each patch with random 

intensity

– Same: Higher attention –> higher aug. intensity

– Inverse: Higher attention –> lower aug. intensity

DeiT-Small@ImageNet

High-attention patches should be preserved 
Inverse achieves 0.2%~0.5% higher accuracy than baselines
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Enabler 2-3: Attention to Intensity Mapping Function

• Gumbel softmax mapping function

• Setting
– GS:       is the row-wise sum in attention map
– Inv-GS:       is the reciprocal of row-wise sum in 

attention map

DeiT-Small@ImageNet

Inv-GS maps the attention to aug. intensity better
Inv-GS achieves 0.6%~0.1% higher accuracy than baselines



Evaluation Settings

• Ten models on two tasks
– Image classification on ImageNet [J. Deng, CVPR’09]

• Five variants of LeViT [H. Graham, ICCV’21]

• Three variants of DeiT [H. Touvron, ICML’21]

• Swin-Tiny [Z. Liu, ICML’21] and PVT-Small [W. Wang, ICCV’21]

– Object detection on COCO [T. Lin, ECCV’14]

• DeiT-Small [H. Touvron, ICML’21] and Swin-Tiny [Z. Liu, ICML’21]

• Two SOTA ViT dedicated data augmentation 
baselines
– DeiT [H. Touvron, ICML’21]

– DeiT-III [H. Touvron, ECCV’22]



AugViT Boosts ViTs’ Accuracies

• AugViT boosts ViTs’ accuracies on ImageNet classification
– +0.3% ~ 1.4% accuracy across different variants of DeiT
– +0.3% ~ 0.6% accuracy across different variants of LeViT

– +0.5% on LeViT-128S, achieving a comparable accuracy with 
EfficientNet-B0 while saving 21.8% FLOPs 
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• AugViT on average boosts DeiT-Small’s accuracy 

on object detection@COCO by a 0.2% higher AP



AugViT is Effective Across Various Tasks

• AugViT on average boosts DeiT-Small’s accuracy 

on object detection@COCO by a 0.2% higher AP

Please refer to our paper for more results！
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