tinyML Summit
Enabling Ultra-low Power Machine Learning at the Edge

Products and applications enabled by tinyML

March 28 – 29, 2023

www.tinyML.org
Arm Ethos-U Support in TVM ML Framework

Rahul Venkatram
March 2023
Overview of Cortex-M CPUs

>10 Billion Chips Shipped

Widely adopted and shipped into billions of devices

Armv7-M

First range of CPUs with TrustZone
Configurable CPU for mainstream and constrained applications

Armv8-M (TrustZone)

First Helium High Efficiency processor
Balanced performance and energy efficiency
Advanced ML, RAS and safety features

Armv8.1-M (TrustZone, Helium)

Arm’s most capable Cortex-M processor
Highest scalar and signal processing performance

Shipments Ramping Up

Released

Arm Cortex-M55

Arm Cortex-M85
Helium: the Next Level of Edge Compute

Armv8.1-M architecture introduces Helium - a new vector extension

Signal processing

Signal conditioning

Machine learning

Feature extraction

Decision algorithm

Up to **5x** higher signal processing performance*
(CFFT in int32)

Up to **15x** higher ML performance*
(matrix multiplication in int8)

*Compared to existing Armv8-M implementation
Ethos-U class of NPUs for Embedded Systems

Providing NN Acceleration in Highly Constrained Environments

Ubiquitous presence

NN acceleration in software

Signal Processing

Orders of magnitude increase in NN perf

Easy integration into existing design

Signal Processing

Common software development environment secures any investment made on software development
High level differences between Ethos-U55 and Ethos-U65

Both are instantiations of the same architecture

Ethos-U55
- **4 configs:** 32/64/128/256 MACs/cycle
- **Designed for:** SRAM + flash
- **Host CPU support:** Cortex-M55, Cortex-M7, Cortex-M4 and Cortex-M33
- **Two 64-bit AXI master interfaces**
 - M0: Full read+write AXI master to SRAM
 - M1: Read only AXI master to flash

Ethos-U65
- **2 configs:** 256/512 MACs/cycle
- **Designed for:** SRAM + DRAM and/or flash
- **Host CPU support:** Cortex-M55 and Cortex-M7
- **Two 128-bit AXI master interfaces**
 - M0: Full read+write AXI master to SRAM
 - M1: Full read+write AXI master to DRAM
Cortex-M Pushes Boundaries for Real-time On-device Processing

Enabling New Workloads and Use-cases in a Unified Development Environment

Relative ML and Signal Processing Performance

- Cortext-M today
- New Cortex-M CPU enabled by Helium
- Arm Ethos-U microNPUs unlock another level of ML performance

*Existing processors with DSP extensions
**Based on Arm data

Graph not to scale
arm
ML software
Open Source CMSIS-NN Library
Aiming for Best-in-class Performance for Cortex-M CPUs

- CMSIS-NN: Common Microcontroller Software Interface Standard – Neural Networks
- Optimized software library for key machine learning operators
- Consistent interface to all Cortex-M CPUs
- Empower and enable Cortex-M processors for tinyML applications
- Permissive Apache 2.0 license - available on GitHub
Ethos-U55 Optimized SW Flow

- Train network in TF
- Quantize it to Int8 TFL flatbuffer file (.tflite file)
- NN Optimizer identifies graphs to run on Ethos-U55
 - Optimizes, schedules and allocates these graphs

- Runtime executable file on device
- Layers supported on Ethos-U55 are accelerated on it
- The remaining layers are executed on Cortex-M
 - CMSIS-NN optimized kernels if available
 - Fallback on the TFLu reference kernels
Unified Software Development: Fastest Path to Endpoint AI

- **Multiple software development flows**
- **Harder to program and debug**
- **More complex, longer time-to-market**

- **Unified software development flow**
- **Works with common ML frameworks and existing tools**
- **More productivity, faster time-to-market**
Addressing the ML Fragmentation Issue
Addressing ML Fragmentation Challenges

- Fragmentation of ML frameworks leads to divergent evolution of network architectures and supported operators
- Lack of “target platform awareness” during the training process leads to long model development loops
- TVM Code Generation Technology for the Arm AI Platform
- Any developer, targeting Arm hardware can potentially:
 - Take any network trained in any ML frameworks and compile it down to a binary that will run on the full range of Arm processors

![Diagram showing the process of TVM compiler with stages: Model import, Optimize Operators (Auto TVM), Optimize Operators (Auto TVM), Tensor IR (Low-level IR), Relay Module (High-level IR), C source code, and Built together with application code.](image-url)
Current Status of TVM Support

- Cortex-M is supported natively by TVM with the “C” codegen
 - CMSIS-NN can also be used to further accelerate operators
 - microTVM also supports Zephyr RTOS for Cortex-M

- Added support to over 26 popular operators for Ethos-U

 - Conv2D
 - Depthwise Conv2D
 - Transposed Convolution
 - Fully Connected
 - Maxpool
 - Average Pool
 - Pad
 - Add
 - Sub
 - Mul
 - Min
 - Clip

 ...and many more

There is a demonstration app to showcase Cortex-M/CMSIS-NN/Ethos-U at:

Support for more popular networks coming soon...

- Anomaly Detection (Deep Auto Encoder)
- Image Classification (ResNet-8)
- Keyword Spotting (DS-CNN)
- Visual Wake Words (MobileNetV10.25x)
- Noise Suppression (RNNoise)
- Object Detection (SSDMobileNetV1)
- Speech Recognition (Wav2Letter)
- Face Detection (Yolov4)

...and many more
What is **arm** Virtual Hardware?

+ **Virtual, functional** representation of a physical hardware
+ **Cloud-native** - runs and scales easily in the cloud
+ **Suitable for all IoT workloads** from MCUs through to Intelligent Edges
+ **No dependency on RTL** or silicon availability
Target platform

In addition to FPGAs and Native execution

AVH for Arm Total Solutions for IoT
TOSA – What is it?

Tensor Operator Set Architecture (TOSA)

- A minimal and stable set of tensor-level operators to which most machine learning framework operators can be reduced
- Agnostic to any single high-level framework, compiler backend stack or particular target
- TOSA specification contains detailed functional and numerical descriptions which enables precise code construction for a diverse range of hardware – CPU, GPU & NPU

Neural Network Operators

- Conv2D
 - filter (1001 x 1 x 1 x 1024)
 - bias (1001)
 - output (1 x 1 x 1001)

- Reshape
 - shape (2)
 - output (1 x 1001)

- Softmax
 - output (1 x 1001)

Tensor Level Operators

- AveragePool2D
 - output (1 x 1 x 1 x 1024)

- CONV2D
 - weight (1001 x 1 x 1 x 1024)
 - bias (1001)
 - output (1 x 1 x 1001)

- RESHAPE
 - output (1 x 1001)

- EXP
 - output (1 x 1001)

- REDUCE_SUM
 - output (1 x 1001)

- RECIPROCAL
 - output (1 x 1 x 1)

- MUL
 - output (1 x 1001)
Benefits of TOSA

Portability

- TOSA compliant Neural Networks can run on any TOSA compliant HW whilst guaranteeing numerically consistent behaviour
- The specification defines precision for each operator
- Enables a dramatic reduction in development, test and certification time when deploying to multiple devices
Thank You
Danke
Gracias
Grazie
谢谢
ありがとう
ありがとう
Asante
Merci
감사합니다
धन्यवाद
شكرًا
ধন্যবাদ
תודה
Copyright Notice

This presentation in this publication was presented at the tinyML® Summit (March 28 - 29, 2023). The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org