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EvoNAS yields Pareto-optimal neural architectures

Our end-to-end EvoNAS is able to find Pareto-optimal neural 
architectures (see Figure 5). If a given neural architecture has a 
memory footprint of less than 15kB and an energy consumption 
per inference of less than 1.8mJ, the accuracy drops drastically. 
Increasing both objective measures leads vice versa to higher 
classification accuracies. Restricting ourselves to neural 
architectures that performed best on a given objective 
measurement (Figure 6), we observe architectures that perform 
very well in terms of energy consumption, while others have high 
performance in terms of accuracy. However, our algorithm finds a 
variety of Pareto-optimal neural networks driven by the pre-
defined fitness function F.

Considering the model with 
the best Fitness, assuming  we 
use a 200mAh battery and execute 
our EvoNAS architecture twice 
per second (i.e. at a 2 Hz rate), we 
can run our deployed network 
continuously for 89.8 h without 
the need for a recharge 
(on average Isleep = 2mA,
Iinference = 4.5mA).
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Abstract

Smart wearable devices require accurate, fast, and energy-
efficient neural networks to allow for optimal application 
performance. To advance the field of neural architecture search 
(NAS), we introduce our end-to-end evolutionary NAS (EvoNAS) 
for microcontroller units that optimize both, pre-processing and 
neural network architectures. Each neural network architecture is 
assessed using the multi-objective accuracy, memory footprint, 
inference time, and energy consumption, to derive a common 
performance measure to be maximized. To ensure immediate use 
of all potential solutions on the microcontroller environment, we 
create a software-hardware chain in which each neural network is 
deployed to measure the inference time and power consumption 
directly. In a proof-of-concept study, we focused on the analysis 
of audio-based speech commands. Our experiments suggest that 
2D convolutional layers with automatically set pre-processing 
(short-time Fourier transforms) outperform 1D convolutional 
layers with raw audio signals. We show that our end-to-end 
EvoNAS scales with the complexity of the classification task and 
is still able to find constraint-preserving, and thus deployable, 
Pareto-optimal neural network architectures even when the 
classification task is more complex. Our proposed EvoNAS
approach is dataset and hardware-agnostic, allowing a universal 
use across a wide range of applications.

Methods

Hardware/software setup:
• nRF52840 (32-bit ARM Cortex-M4) Development Kit Board 

from Nordic Semiconductor
• Power Profiler Kit II (PPK2) from Nordic Semiconductor
• Zephyr RTOS
• TensorFlow and TensorFlow Lite Micro
• Kapre Python library 2

To find neural network architectures we utilized evolutionary 
optimization as shown in Figure 2.

Each of the sampled preprocessing and neural network
architecture combinations (see Figure 3A) is evaluated against a 
common multi-objective function to determine its fitness. We 
combine four constrained target measures as a weighted sum 
into a fitness function that penalizes models that violate 
constraints and favors models that are better than the given 
constraint. The fitness function F is described by the following 
equation:

where A is the accuracy of the validation dataset, M the obtained 
memory footprint in Bytes (B), T the measured inference time 
(see Figure 3B) in Milliseconds (ms), and W the energy 
consumption in Millijoule (mJ).

Results

Computations in 2D space outperform 1D neural networks

Regardless of the gene pool, our algorithm is able to converge to 
a maximum fitness value with our given hyperparameter set (see 
Figure 4). Using 1D instead of 2D convolutional layers leads to 
lower fitness values. All of the best optimized models satisfy 
previously defined constraints regarding inference time, memory 
footprint and energy consumption (Mmax = 0.8 MB, Tmax = 200 ms, 
Wmax = 2 mJ).

Discussion
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In this work, we propose an end-to-end software-hardware chain 
based on an evolutionary neural architecture search (EvoNAS) to 
optimize 1D and 2D preprocessing and neural network 
architectures in a single step. Found combinations are contained 
in a single model file and directly tested on the target hardware 
allowing for immediate use in a production environment. In our 
proof-of-concept study we utilized the Speech Commands 1
dataset (see Figure 1). 

Main contributions:
• We propose a fully functional, scalable, software-hardware 

end-to-end pipeline for evolutionary NAS.
• We included 2D audio preprocessing (short-term Fourier 

transform) as part of the evolutionary optimization. This 
enables direct deployment and allows for end-to-end design.

• We found that 2D convolutional neural networks outperform 
1D networks in terms of overall fitness achieved.

• We show that our optimization algorithm is able to find Pareto-
optimal architectures.

We are able to find neural networks that don't violate any of the 
given constraints and that are directly deployable on the 
hardware they were optimized for. However, especially the test 
accuracy of the 12-classes Speech Commands classification task 
is highly affected compared to other state-of-the-art networks. 
This could be due to the downsampling step we performed, as 
the SRAM peak memory consumption of the neural network 
would be too high when used in the microcontroller. Additionally, 
the used implementation of the TFLM-compatible STFT layer in 
the kapre python library leads to too large memory footprints if 
parameters are outside of a very confined range, e.g. n_fft. 

In future work, we also plan to include Mel spectrogram/MFCC 
preprocessing instead of only STFT in our gene pool. We will also 
increase the search space of EvoNAS by expanding the gene 
pool to find more complex, elaborate neural network 
architectures.
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Introduction

Figure 1: EvoNAS for several classification tasks

Figure 2: Overview of EvoNAS. Throughout the chain, each of the four objective measures is 
measured to obtain a fitness score for each candidate neural network architecture. The best 
individuals are selected and bred to create the population for the next generation.
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Figure 3: The evolutionary algorithm creates, evaluates, and selects neural network 
architectures defined by a gene pool and a rule set by also incorporating physical hardware 
measurements. A) The used rule set. B) Example of a power measurement during inference. 
The yellow shaded area under the curve between the start and end of inference (∆t = 452ms) is 
the consumed energy during that time (W = 6.4mJ, with a supply voltage of 3.3V ).

Our EvoNAS algorithm adapts for classification problems 
with varying complexity

Our EvoNAS approach yields appropriate neural architectures for 
each classification problem and complexity. The performance in 
terms of accuracy is slightly worse compared to our ResNet-50 
baseline results where we used STFT preprocessing as well. 
However, we are an order of magnitude smaller and faster and 
can ensure that our proposed network architectures are actually 
deployable to our target environment because they are fulfilling 
every given constraint. Our found architectures for all three 
classification problems have an up to 99, 992% lower memory 
footprint compared to our ResNet-50 baseline (280 MB).

Figure 4: Maximum fitness of the best model in each generation.

Figure 5: All evaluated neural architectures of the EvoNAS with their respective objective measures (2D space).

Figure 6 Generated neural architectures that 
achieve the best values in their respective 
objective measure (circle: memory footprint, 
triangle: inference time, cross: validation 
accuracy, plus: fitness).

Table 1: Results EvoNAS for different classification problems (2D space).


