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We evaluate different inference runtimes with respect to their 
memory footprint and compute bandwidth for different precisions:
• TensorFlow Lite Micro
• Apache Micro TVM 
• TensorFlow Lite Micro Interpreter less (Infineon Fork)
• Octopus (Infineon Inhouse)
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Summary

This poster presents implementation for embedded radar-based 
gesture detection, featuring enhanced performance and reduced 
computational requirements, silicon usage, and power 
consumption compared to existing methods. We assess both 
established and emerging tools and techniques for embedded 
pre-processing, as well as neural network mapping and edge 
inference.

Previous work

Neural Network Architecture
The diagram below illustrates the neural network architecture. 
Thanks to our thorough pre-processing and the compact size of 
the input features, we can employ a relatively small neural 
network to efficiently interpret these features.

Power consumption

In the past, we introduced an approach that transformed radar 
data into visual representations and utilized a convolutional 
neural network (CNN) inspired by computer vision techniques to 
classify various hand gestures. Our solution achieved a 
commendable accuracy of 90% for three distinct hand gestures 
within a maximum range of 30 cm.

The image displayed below illustrates the primary pre-processing 
scheme. It predominantly relies on generic digital signal 
processing (DSP) blocks, which are commonly found in 
embedded libraries such as ARM's CMSIS-DSP. This enables 
straightforward and efficient implementation on Cortex M 
Microcontrollers.

Novel Algorithm
The novel algorithm detects the nearest moving target in front of 
the sensor by analysing its trajectory over time in five 
dimensions: range, velocity, azimuth, elevation, and amplitude. 
This approach efficiently captures the most crucial information for 
gesture recognition. Consequently, it minimizes the input size for 
the neural network after pre-processing, enabling more efficient 
network designs. By utilizing a recurrent neural network (RNN), 
each frame received from the sensor can be processed promptly. 
The RNN's hidden state vector retains relevant historical data, 
eliminating the need for specific logic to detect gesture start and 
end frames. For every frame, the RNN produces a probability 
distribution for each supported gesture plus background. A final 
filtering step transforms this continuous stream of probabilities 
into discrete gesture events.

The provided chart depicts the features generated by the pre-
processing algorithm for various supported gestures. The 
average is represented by the blue line, while the pale blue area 
represents the distribution within our training database.

Features

Challenges and Shortcomings in previous Work
Due to limitations in CPU bandwidth, the previous algorithm 
couldn't support running the CNN-based gesture classifier for 
every frame on an embedded processor. Instead, we devised 
specific logic to detect motion in front of the radar sensor, and 
gesture classification was only performed when motion was 
detected.
However, this approach has a significant drawback. The motion 
detection mechanism needs to be fine-tuned for different 
positions, hand sizes, velocities, and types of gestures. It 
becomes challenging to find an optimal setting that satisfies 
application requirements such as sensitivity, robustness, and 
latency.
Upon triggering gesture detection, a substantial amount of data 
(the entire history) needs to be processed by a CNN, resulting in 
noticeable latency for the detection process.
Ultimately, we were able to execute the algorithm on an Arm 
Cortex-M4 processor running at 150 MHz clock speed, with a 
CPU utilization of 70%. The RAM usage amounted to 260 kB.
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The image below depicts the 5 gestures our algorithm supports. 
They are detected at a rage up to 1m and with a field of view of 
+-45°relative to the sensor.
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Conclusions

Target Platforms

15mmx20mm

• PSOC6
– Cortex-M4F @ 150Mhz
– 1MB Flash
– 256kB RAM

• PSOC4
– Cortex-M0p @ 48Mhz
– 128 kB Flash
– 16k B RAM

The gesture detection application is implemented on two 
embedded microcontroller systems, each offering different 
performance and price points.

The provided table presents the memory footprints and frame 
execution times for varying neural network and pre-processing 
precisions using different inference runtimes. The numbers 
represent overall resource usage including pre-processing, neural 
network inference and application code.

Preprocessing Neural Network FLASH [kB]] RAM [kB] CPU [ms]
Processor Precision Engine Precision
CM4 float32 TFLM float32 278 25 1,3
CM4 float32 TVM float32 204 21 1,2
CM4 int16 TVM float32 121 18 1,4
CM4 int16 TVM int16 120 18 1,4
CM0 int16 TVM int16 107 9,7 22

The average power consumption on the Psoc6 Platform remains 
below 10mW, as illustrated in the chart below, which displays the 
individual contributors to power consumption.

Float32 Precision
Tensorflow Lite Micro Tensorflow Lite Micro Interpreterless

PSoC6 Cortex-M4F PSoC4 Cortex-M0+ PSoC6 Cortex-M4F PSoC4 Cortex-M0+
Flash [kB] 83,40 91,50 32,20 58,70
RAM [kB] 7,00 7,00 4,00 7,00
time [ms] 0,33 13,90 0,29 13,90

Apache TVM Octopus
Flash [kB] 8,40 24,00 9,00 13,00
RAM [kB] 0,75 0,54 0,54 0,50
time [ms] 0,28 16,90 1,47 20,10

• In this work we demonstrate an embedded radar-based hand 
gesture recognition system capable of classifying 5 distinct 
gestures with 96% accuracy on our evaluation dataset and 
runnable on an ARM Cortex-M0+ based microcontroller.

• The system requires <10 kB RAM, <128 kB FLASH, and 
consumes <10mW of power. 

• Microcontroller with an ARM Cortex-M0+ core clock at 48 
MHz can run our algorithm at 30 fps while consuming 73% of 
the CPU time.

This system is the first to our knowledge to achieve such low 
memory, storage, compute and power requirements while 
maintaining high gesture classification accuracy.

Int16 Precision
Apache TVM Octopus

PSoC6 Cortex-M4F PSoC4 Cortex-M0+ PSoC6 Cortex-M4F PSoC4 Cortex-M0+
Flash [kB] 7,70 10,2 6,50 7,50
RAM [kB] 0,63 0,64 0,43 0,69
time [ms] 0,35 10,40 1,45 12,80
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Figure 1. Vision inspired classification algorithm

Figure 2. Novel Algorithm Overview

Figure 3. Supported Gestures

Figure 4. Block Diagram of the Radar Pre-processing

Figure 5. Time Series Features for different Gestures

Figure 6. Neural Network Block Diagram

Table 1. Resource usage of different Inference Engines

Figure 7. Application Target Platforms

Table 2. Application Level Resource usage 

Figure 8. Application Power Consumption 
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