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1. Unsustainable energy use

. Energy (and COZ) needed to train latest ANNs aIready

What’s wrong

with Al?

just very expensive (e.g. . (
“FLaMa = $4M). GPT-4 is 100

4
. I]?
A

Human Brain Project



What’s wrong
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with Al?

2. Brittle, easily fooled & hard to explain

e Vast parameter sets (100 trillion+ for GPT-4) used for
current ANNs ‘over-fit’ the data.

* Tiny changes (e.g. to an image) can fool the system
and make classification incorrect — with very high
confidence.

* ghese cha

“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence



3. Static & inflexible — soon outdated

* Current ANNs are trained once on fixed training set at
huge cost, and the learning is frozen.
* Real world is not like that - everything is constantly

What’s wrong changing both within and outside the system.
ith Al?  Hence the growing number of research projects
Wi y setting out to address this issue.
Static ML Adaptive ML
Learn once Learn continually

Deploy once .
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Biological systems do
things differently

* Learn continuously & adapt to changes
* Use tiny amounts of energy

* Performance degrades gracefully & safely

...and so we learn from
biology and create
BitBrain to address

these concerns

(image by Kei Ito et al)




An innovative working mechanism (the SBC memory) and surrounding
infrastructure (BitBrain) based upon a novel synthesis of ideas from sparse
coding, computational neuroscience and information theory.

Patent GB 2113341.8 was filed at the UKIPO on 17t September 2021.

So what’s all

th iS BitBrain * Single-pass supervised learning avoiding expensive computatiuons.

e Accurate inference that is very robust against imperfect inputs.
P
Sthf d bOUt : * Continuous and adaptive learning.

* Fast and low-energy operation on conventional & neuromorphic
processors.

* Implemented on Raspberry Pi and SpiNNaker.

/i‘
‘\ H?‘ Hopkins, M., Fil, J., Jones, E. G. & Furber, S. (2023); BitBrain and Sparse Binary Coincidence (SBC) memories:
\/ Fast, robust learning and inference for neuromorphic architectures. Frontiers in Neuroinformatics
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Address Decoder
Elements (ADEs)

Each ADE samples a small subset of the
input data, like a synaptic cluster.

An example ADE which contains multiple
synapses with individual weights which
can signify strength and/or longevity of
connection.

The input stream can be any objects or
data which are able to be coded as a
vector of bits or any other scalar values
i.e. almost anything! Here using a 784-
vector of 8-bit values to represent a
greyscale raster image.

ADE fires when the sum of the
connected input values multiplied by
their respective synaptic weights within
an ADE reaches a threshold - which is
learned homeostatically.
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Address Decoders
(ADs) accessing a 2D
SBC memory
This is a 2D memory; 3D and higher
(using more ADs) are also of interest.

Widths of SBC match the length of ADs
e.g. 1,024 elements.

depth = f( # classes )

{ <- activated memory position

Activation pattern is sparse i.e. only a
small percentage of the ADEs in each
AD will fire for any given input.

Each coincidence of active ADEs between
ADs activates a memory location that
reads or writes information about the
class which has activated it.

Address Decoder 2

Address Decoder 1




Class information held
within SBC memory

‘Side view’ of SBC memory, showing
‘depth’ which varies with number

of classes in problem. In this case, 10
classes with ‘one-hot’ coding meaning
10 bit cells per memory position.

Writing to the SBC: go to all activated
memory positions & set the relevant
class bits if they are not already set.

Reading from the SBC: count bits set
over all activated memory positions &
choose class with the highest sum.

Assumes ‘one-hot’ encoding. If classes
are coded differently then another
encoding/decoding process required.

@ <- Bits that were
set previously

Memory positions
activated by

coincident ADEs \

3 activations are

shown, and in thi
case the input s

from class 6.

@ <- Bits set by this
input

< Depth of SBC memory =

1 2 3 45 6 7 8 910
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Basic results from

MNIST
(10 classes balanced)

* AD lengths = 2,048

 4x ADs with {6, 8, 10, 12 } widths
of synapses

e AD target firing ~1% per input

e synapses spatially clustered and
then structural plasticity used to
home in on features

10x 2D SBCs:

» 6x full-size between ADs

* 4x half-size within ADs

* 42MB memory for full occupancy

O
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MNIST with
LeNet-5

e Early but respected CNN
designed for character
recognition:

https://en.wikipedia.org/wiki/LeNet

* max 100 epochs

» early stopping, ‘patience’ =5
e sigmoidal activations
 ‘static’ noise

Human Brain Project

MNIST accuracy by Training noise SD for LeNet-5 - bounded pixels

Test noise SD
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https://en.wikipedia.org/wiki/LeNet

MNIST robustness comparison - Gaussian noise
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MNIST robustness comparison - Gaussian noise
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Basic results from
EMNIST

(62 classes unbalanced)

* BitBrain setup identical to
MNIST

* much harder problem
* very unbalanced

* natural class aliasing:
{OIO)O}I{iI Illll}l{S)SIS}I{BIS}

O
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EMNIST accuracy by Training noise SD for BitBrain - Gaussian noise

Test noise SD




EMNIST
robustness

comparison

BitBrain vs
LeNet-5
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Test set accuracy in %

EMNIST robustness comparison - Gaussian noise
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EMNIST
robustness

comparison
BitBrain vs
CapsNet

Human Brain Project

Test set accuracy in %

EMNIST robustness comparison - Gaussian noise
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MNIST comparison
with other single-
pass methods - 1

e Red bars are CNNs trained for
only one epoch

e Blue bars are specifically
designed single-pass classification
methods

* References for all methods are in
our upcoming paper
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MNIST comparison with other single-pass methods - 2

BitBrain compared with single-pass SVM methods for two-class problems.
- best results are in bold.

libSVM | Perceptron Pegasos | Pegasos LASVM StreamSVM | StreamSVM BitBrain
1 20 1 2
Ovs1l  99.52 99.47 95.06 99.48 98.82 99.34 99.71 99.95
8vs9 | 96.57 95.90 69.41 90.62 90.32 84.75 94.70 98.49

. - N
\ 4
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SVM results from: Piyush Rai, Hal Ill, and Suresh Venkatasubramanian. Streamed learning: One-pass SVMs.
IJCAI International Joint Conference on Artificial Intelligence, 2009.




gitBrain MNIST LIVE demo




University of Manchester - confidential
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SpiNNaker

* A million ARM processors in one

human brain...

computer
 Able to model about 1% of the

e ...or10 mice!
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SpiNNaker board
(864 ARM cores)
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SpiNNaker chip S I R
(18 ARM cores) T T T
¢ 3 ¢

SpiNNaker

machines

. HBP platform
. 1M cores

. 11 cabinets
(including server)

. Launch 30 March 2016
" \ . then 500k cores
é»] P'y Spi_.ll\_!'l}_loker «  ~450 remote users
& uaen . 5M SpiNNaker jobs run

Human Brain Project



Distributed
implementation of
BitBrain on SpiNNaker

* BitBrain was designed to be 3
compatible with conventional 5
CPUs, but also with energy- <
efficient, distributed computers,
such as SpiNNaker. 2048 ADEs—

* The algorithm can be spread
among arbitrarily many cores on
SpiNNaker, and thus can make full
use of its inherent parallelism.

V)

v

Address Decoder 2/4

-

256
ADEs

SBC memory 1/6

. 1A SpiNNaker
s

Human Brain Project
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Distributed
implementation of
BitBrain on SpiNNaker

Example implementation:
* 4x8=32ADE cores

* 6x64=384SBC cores

’ .
é ]) SpiNNaker
) | naveaitd

Human Brain Project

64 x

Combine the results and
construct a confusion matrix

Host
machine

SBC 6-10 SBC 6-12 SBC 8-10

Calculate feature
oincidences

SBC 8-12 SBC 10-12

Calculate
firing patterns

25
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BitBrain status:

* novel single-pass learning mechanism

e accurate inference — best in ‘single-pass’ class

* good robustness to imperfect inputs

* simple & energy-efficient operation (no floating-point or backpropagation)
e continuous and single-shot learning

* single-thread BitBrain on 3.2GHz Apple M1 gives 10k inferences in 0.42 secs
* implementations on Raspberry Pi & SpiNNaker

Conclusions

Improvements already investigated:
» fjitter’/data augmentation — +~1% on MNIST
e weighting of counts by occupancy — +~1% on MNIST

To do:

* more benchmarks, e.g.: CIFAR-10 & -100, German traffic sign database...
* CNN front end (in progress)

* layers of SBC memories

» application to different types of data — time series, DNA, abstract codes

P N » differing delays on synaptic connections for spatio-temporal patterns
Q‘, Hy * theory — connection to kernel methods?
h
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SpiNNaker2 job
opportunities!

‘ SpiNNcloud

Join us:

https://spinncloud.softgarden.io/en/vacancies

5
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SpiNNaker2
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High-level Frameworks
(Neuromorphic, Machine
Learning, Hybrid)

Intermediate Graph Representation
Partition and Mapping [

Optimization
Loop

Edge-based Systems

Sponsored by:

Large-scale System

* Large NLP
Models

* Brain
simulation

* Highly
parallel
control

European
Innovation
Council
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