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What’s wrong 
with AI?

1. Unsustainable energy use

• Energy (and CO2) needed to train latest ANNs already 
huge. Power stations built near the server farms.

• Cannot continue growing super-exponentially or 
planet will be covered with memory chips with no 
electricity left for anything else!

• Autonomous EVs require AI onboard using ≈1W 
instead of current ≈100W. IoT/edge devices need to 
be far more economical still.

• Green legislation will make this waste unviable not 
just very expensive (e.g. 21 days on 2,000 GPUs for 
LLaMa = $4M). GPT-4 is 1000x bigger than LLaMa…



What’s wrong 
with AI?

2. Brittle, easily fooled & hard to explain

• Vast parameter sets (100 trillion+ for GPT-4) used for 
current ANNs ‘over-fit’ the data.

• Tiny changes (e.g. to an image) can fool the system 
and make classification incorrect – with very high 
confidence.

• These changes could be from random errors or a 
malign actor.

• Explainability is related, and increasingly a legal 
requirement.



What’s wrong 
with AI?

3. Static & inflexible – soon outdated

• Current ANNs are trained once on fixed training set at 
huge cost, and the learning is frozen.

• Real world is not like that - everything is constantly 
changing both within and outside the system.

• Hence the growing number of research projects 
setting out to address this issue.



Biological systems do 
things differently
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• Learn continuously & adapt to changes

• Use tiny amounts of energy

• Performance degrades gracefully & safely

…and so we learn from 
biology and create 
BitBrain to address 

these concerns
(image by Kei Ito et al)



So what’s all 
this BitBrain 
stuff about?

An innovative working mechanism (the SBC memory) and surrounding 
infrastructure (BitBrain) based upon a novel synthesis of ideas from sparse 
coding, computational neuroscience and information theory.

Patent GB 2113341.8 was filed at the UKIPO on 17th September 2021.

• Single-pass supervised learning avoiding expensive computatiuons.
• Accurate inference that is very robust against imperfect inputs.
• Continuous and adaptive learning.
• Fast and low-energy operation on conventional & neuromorphic

processors.
• Implemented on Raspberry Pi and SpiNNaker.

Hopkins, M., Fil, J., Jones, E. G. & Furber, S. (2023); BitBrain and Sparse Binary Coincidence (SBC) memories: 
Fast, robust learning and inference for neuromorphic architectures. Frontiers in Neuroinformatics



Address Decoder 
Elements (ADEs)
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89            42           -18             23         -102           74  

Each ADE samples a small subset of the 
input data, like a synaptic cluster.

An example ADE which contains multiple 
synapses with individual weights which 
can signify strength and/or longevity of 
connection. 

The input stream can be any objects or 
data which are able to be coded as a 
vector of bits or any other scalar values 
i.e. almost anything!  Here using a 784-
vector of 8-bit values to represent a 
greyscale raster image.

other hand, the ability of dendritic branches in pyramidal and
other neuron types to support local electrogenesis, evidenced by
the generation of dendritic spikes, has been shown to underlie the
non-linear integration of synaptic inputs.

Based on their primary source, dendritic spikes are distin-
guished in three main types: sodium, calcium and NMDA (N-
methyl-D-aspartate) spikes, all of which have been extensively
documented in pyramidal neurons both in vitro (Ariav et al., 2003;
Gasparini et al., 2004; Golding et al., 2002; Kim et al., 2012;
Losonczy and Magee, 2006; Makara and Magee, 2013; Nevian et al.,
2007; Polsky et al., 2004; Schiller et al., 1997) and in vivo (Lavzin
et al., 2012; Smith et al., 2013). They are characterized as nonlinear,
all-or-none dendritic responses which can propagate actively for
some distance and are often confined within the generating branch
(Antic et al., 2010; Larkum and Zhu, 2002; Schiller et al., 1997,
2000b). This allows the branch, the dendrite or the neuron to
integrate synaptic signals over much longer timescales than
passive integration would allow.

Since the processing capabilities of pyramidal neuron dendrites
are discussed in several excellent reviews (Branco and Häusser,
2010; Häusser et al., 2003; Major et al., 2013; Segev, 2000; Silver,
2010; Spruston, 2008), we highlight just a few of their key features.
Cortical dendrites, perform synaptic integration non-uniformly,
with distal inputs within the same branch being amplified over
larger time windows compared to proximal ones (Branco and
Häusser, 2011). This difference is attributed, by computational
models, to the generation of NMDA-dependent dendritic spikes
which are facilitated when synapses are located near the tip of a
dendritic branch (Branco and Häusser, 2011; Sidiropoulou and
Poirazi, 2012). As a result, distal synapses, which are individually

too weak to significantly influence the somatic voltage, can act
cooperatively to affect the output of the neuron (Schiller et al.,
2000a). A similar nonlinearity that serves as a mechanism for
coincidence detection also depends on NMDA conductances, this
time in the apical tuft dendrites of layer 5 pyramidal neurons
(Larkum et al., 2009). The initiation of dendritic spikes and their
amplitude is, in turn, determined by the magnitude and location of
inhibition that these neurons receive (Jadi et al., 2012).

The above are just a few examples of modeling and
experimental studies suggesting that local spikes enable dendritic
branches to implement nonlinear integration modes (Mel, 1993;
Häusser et al., 2000; Gasparini et al., 2004, Polsky et al., 2004;
Losonczy and Magee, 2006; Makara and Magee, 2013), thus
conferring enhanced flexibility in neuronal information proces-
sing. In order to exploit this additional processing power of
nonlinear dendrites, synaptic input should be such that the whole
range of possible dendritic responses are explored, including the
generation of dendritic spikes. As discussed in Sections 2.1 and 2.2,
the spatial arrangement of synaptic inputs in dendritic branches
can provide a way to realize this goal.

2.1. Effect of spatial synaptic arrangement on dendritic integration:
distributed connectivity and linear integration

Distributed synaptic inputs, irrespectively of their location
within the neuron, have been suggested to summate linearly, a
result attributed to the elaborated biophysical profile of pyramidal
neuron dendrites (Cash and Yuste, 1999; Yuste, 2011). This linear
integration mode may be particularly useful when synaptic input
is dispersed uniformly throughout the dendritic tree, for example

Fig. 1. Dendritic structure and plasticity. Each dendritic tree (apical or basal) in pyramidal neurons can be subdivided to a number of dendrites (dendritic subtrees connected
to the apical trunk or the soma). Thin terminal branches are the main targets of excitation in the cerebral cortex. There, synaptic inputs can be organized in the following ways:
(1) they can be localized in the same dendritic branch without specific spatial arrangement (in-branch localization), (2) they can form anatomical clusters, whereby spines
form morphologically distinct groups of several spine heads located in distances less than 5 mm from each other within stretches of a given branch and (3) they can form
functional clusters where spine density is uniform but nearby synapses (located within 10–20 mm) are activated synchronously. The implications of these different
arrangements of connectivity at the dendritic level are discussed in Section 2.

G. Kastellakis et al. / Progress in Neurobiology 126 (2015) 19–35 21

From Synaptic clustering within dendrites: An emerging theory of 
memory formation. Kastellakis et al (2015)

ADE fires when the sum of the 
connected input values multiplied by 
their respective synaptic weights within 
an ADE reaches a threshold - which is 
learned homeostatically.



Address Decoders 
(ADs) accessing a 2D 

SBC memory
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This is a 2D memory; 3D and higher 
(using more ADs) are also of interest.

Widths of SBC match the length of ADs
e.g. 1,024 elements.

depth = f( # classes )

<- activated memory position

Activation pattern is sparse i.e. only a 
small percentage of the ADEs in each 
AD will fire for any given input.

Each coincidence of active ADEs between 
ADs activates a memory location that 
reads or writes information about the 
class which has activated it.



Class information held 
within SBC memory
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‘Side view’ of SBC memory, showing
‘depth’ which varies with number 
of classes in problem.  In this case, 10 
classes with ‘one-hot’ coding meaning
10 bit cells per memory position.

⇐ Depth of SBC memory ⇒

1    2    3    4    5    6    7    8    9   10

<- Bits that were
set previously

Memory positions
activated by 
coincident ADEs 

<- Bits set by this
input

Writing to the SBC: go to all activated 
memory positions & set the relevant 
class bits if they are not already set.

Reading from the SBC: count bits set 
over all activated memory positions & 
choose class with the highest sum.

Assumes ‘one-hot’ encoding.  If classes 
are coded differently then another 
encoding/decoding process required.

3 activations are 
shown, and in this 
case the input is 
from class 6.



Basic results from 
MNIST

(10 classes balanced)

• AD lengths = 2,048
• 4x ADs with { 6, 8, 10, 12 } widths
      of synapses
• AD target firing ~1% per input
• synapses spatially clustered and
      then structural plasticity used to
      home in on features
10x 2D SBCs:
• 6x full-size between ADs
• 4x half-size within ADs
• 42MB memory for full occupancy 
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MNIST with 
LeNet-5

• Early but respected CNN
     designed for character
     recognition: 
https://en.wikipedia.org/wiki/LeNet

• max 100 epochs
• early stopping, ‘patience’ = 5 
• sigmoidal activations
• ‘static’ noise
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https://en.wikipedia.org/wiki/LeNet


MNIST 
robustness 
comparison 
BitBrain vs 
LeNet-5



MNIST 
robustness 
comparison 
BitBrain vs 
CapsNet



Basic results from 
EMNIST

(62 classes unbalanced)

• BitBrain setup identical to
     MNIST
• much harder problem
• very unbalanced
• natural class aliasing: 

{ o, O, 0 }, { i, I, l, 1 }, { s, S, 5 }, { B, 8 }
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EMNIST 
robustness 
comparison 
BitBrain vs 
LeNet-5



EMNIST 
robustness 
comparison 
BitBrain vs 
CapsNet
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MNIST comparison 
with other single-
pass methods - 1

• Red bars are CNNs trained for
only one epoch

• Blue bars are specifically
designed single-pass classification
methods

• References for all methods are in
our upcoming paper



MNIST comparison with other single-pass methods - 2
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BitBrain compared with single-pass SVM methods for two-class problems.
- best results are in bold.

SVM results from: Piyush Rai, Hal III, and Suresh Venkatasubramanian. Streamed learning: One-pass SVMs. 
IJCAI International Joint Conference on Artificial Intelligence, 2009.

libSVM Perceptron Pegasos
1 

Pegasos
20 LASVM StreamSVM

1 
StreamSVM

2 BitBrain

0 vs 1 99.52 99.47 95.06 99.48 98.82 99.34 99.71 99.95
8 vs 9 96.57 95.90 69.41 90.62 90.32 84.75 94.70 98.49
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SpiNNaker
• A million ARM processors in one 

computer

• Able to model about 1% of the 
human brain…

• …or 10 mice!



SpiNNaker 
machines

SpiNNaker chip
(18 ARM cores)

SpiNNaker board
(864 ARM cores)

• HBP platform
• 1M cores
• 11 cabinets

(including server)

• Launch 30 March 2016
• then 500k cores
• ~450 remote users
• 5M SpiNNaker jobs run
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Distributed 
implementation of 

BitBrain on SpiNNaker

• BitBrain was designed to be 
compatible with conventional 
CPUs, but also with energy-
efficient, distributed computers, 
such as SpiNNaker.  

• The algorithm can be spread 
among arbitrarily many cores on 
SpiNNaker, and thus can make full 
use of its inherent parallelism.

Address Decoder 2/4

2048 ADEs

SBC memory 1/6
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Distributed 
implementation of 

BitBrain on SpiNNaker

Example implementation:

• 4 x 8 = 32 ADE cores

• 6 x 64 = 384 SBC cores

Combine the results and
construct a confusion matrix

AD-6 AD-12AD-8 AD-10

SBC 6-8 SBC 6-10 SBC 6-12 SBC 8-10 SBC 8-12 SBC 10-12 

Host 
machine

Input data

8 x

64 x

Calculate feature 
coincidences

Calculate 
firing patterns
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Conclusions

BitBrain status:
• novel single-pass learning mechanism
• accurate inference – best in ‘single-pass’ class
• good robustness to imperfect inputs
• simple & energy-efficient operation (no floating-point or backpropagation)
• continuous and single-shot learning
• single-thread BitBrain on 3.2GHz Apple M1 gives 10k inferences in 0.42 secs
• implementations on Raspberry Pi & SpiNNaker

Improvements already investigated:
• ‘jitter’/data augmentation – +~1% on MNIST
• weighting of counts by occupancy – +~1% on MNIST

To do:
• more benchmarks, e.g.: CIFAR-10 & -100, German traffic sign database…
• CNN front end (in progress)
• layers of SBC memories
• application to different types of data – time series, DNA, abstract codes
• differing delays on synaptic connections for spatio-temporal patterns
• theory – connection to kernel methods?
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SpiNNaker2 job 
opportunities!

https://spinncloud.softgarden.io/en/vacancies

Join us:

Large-scale SystemEdge-based Systems

Intermediate Graph Representation

Partition and Mapping

Bare-metal Deployment

• Large NLP 
Models

• Brain 
simulation

• Highly 
parallel 
control

Optimization 
Loop

High-level Frameworks 
(Neuromorphic, Machine 

Learning, Hybrid)

Sponsored by:
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