

June 26 - 28, 2023

A novel mechanism for edge ML
Steve Furber CBE FRS FREng

ICL Professor of Computer Engineering
The University of Manchester

2

What’s wrong
with AI?

1. Unsustainable energy use

• Energy (and CO2) needed to train latest ANNs already
huge. Power stations built near the server farms.

• Cannot continue growing super-exponentially or
planet will be covered with memory chips with no
electricity left for anything else!

• Autonomous EVs require AI onboard using ≈1W
instead of current ≈100W. IoT/edge devices need to
be far more economical still.

• Green legislation will make this waste unviable not
just very expensive (e.g. 21 days on 2,000 GPUs for
LLaMa = $4M). GPT-4 is 1000x bigger than LLaMa…

What’s wrong
with AI?

2. Brittle, easily fooled & hard to explain

• Vast parameter sets (100 trillion+ for GPT-4) used for
current ANNs ‘over-fit’ the data.

• Tiny changes (e.g. to an image) can fool the system
and make classification incorrect – with very high
confidence.

• These changes could be from random errors or a
malign actor.

• Explainability is related, and increasingly a legal
requirement.

What’s wrong
with AI?

3. Static & inflexible – soon outdated

• Current ANNs are trained once on fixed training set at
huge cost, and the learning is frozen.

• Real world is not like that - everything is constantly
changing both within and outside the system.

• Hence the growing number of research projects
setting out to address this issue.

Biological systems do
things differently

6

• Learn continuously & adapt to changes

• Use tiny amounts of energy

• Performance degrades gracefully & safely

…and so we learn from
biology and create
BitBrain to address

these concerns
(image by Kei Ito et al)

So what’s all
this BitBrain
stuff about?

An innovative working mechanism (the SBC memory) and surrounding
infrastructure (BitBrain) based upon a novel synthesis of ideas from sparse
coding, computational neuroscience and information theory.

Patent GB 2113341.8 was filed at the UKIPO on 17th September 2021.

• Single-pass supervised learning avoiding expensive computatiuons.
• Accurate inference that is very robust against imperfect inputs.
• Continuous and adaptive learning.
• Fast and low-energy operation on conventional & neuromorphic

processors.
• Implemented on Raspberry Pi and SpiNNaker.

Hopkins, M., Fil, J., Jones, E. G. & Furber, S. (2023); BitBrain and Sparse Binary Coincidence (SBC) memories:
Fast, robust learning and inference for neuromorphic architectures. Frontiers in Neuroinformatics

Address Decoder
Elements (ADEs)

8

89 42 -18 23 -102 74

Each ADE samples a small subset of the
input data, like a synaptic cluster.

An example ADE which contains multiple
synapses with individual weights which
can signify strength and/or longevity of
connection.

The input stream can be any objects or
data which are able to be coded as a
vector of bits or any other scalar values
i.e. almost anything! Here using a 784-
vector of 8-bit values to represent a
greyscale raster image.

other hand, the ability of dendritic branches in pyramidal and
other neuron types to support local electrogenesis, evidenced by
the generation of dendritic spikes, has been shown to underlie the
non-linear integration of synaptic inputs.

Based on their primary source, dendritic spikes are distin-
guished in three main types: sodium, calcium and NMDA (N-
methyl-D-aspartate) spikes, all of which have been extensively
documented in pyramidal neurons both in vitro (Ariav et al., 2003;
Gasparini et al., 2004; Golding et al., 2002; Kim et al., 2012;
Losonczy and Magee, 2006; Makara and Magee, 2013; Nevian et al.,
2007; Polsky et al., 2004; Schiller et al., 1997) and in vivo (Lavzin
et al., 2012; Smith et al., 2013). They are characterized as nonlinear,
all-or-none dendritic responses which can propagate actively for
some distance and are often confined within the generating branch
(Antic et al., 2010; Larkum and Zhu, 2002; Schiller et al., 1997,
2000b). This allows the branch, the dendrite or the neuron to
integrate synaptic signals over much longer timescales than
passive integration would allow.

Since the processing capabilities of pyramidal neuron dendrites
are discussed in several excellent reviews (Branco and Häusser,
2010; Häusser et al., 2003; Major et al., 2013; Segev, 2000; Silver,
2010; Spruston, 2008), we highlight just a few of their key features.
Cortical dendrites, perform synaptic integration non-uniformly,
with distal inputs within the same branch being amplified over
larger time windows compared to proximal ones (Branco and
Häusser, 2011). This difference is attributed, by computational
models, to the generation of NMDA-dependent dendritic spikes
which are facilitated when synapses are located near the tip of a
dendritic branch (Branco and Häusser, 2011; Sidiropoulou and
Poirazi, 2012). As a result, distal synapses, which are individually

too weak to significantly influence the somatic voltage, can act
cooperatively to affect the output of the neuron (Schiller et al.,
2000a). A similar nonlinearity that serves as a mechanism for
coincidence detection also depends on NMDA conductances, this
time in the apical tuft dendrites of layer 5 pyramidal neurons
(Larkum et al., 2009). The initiation of dendritic spikes and their
amplitude is, in turn, determined by the magnitude and location of
inhibition that these neurons receive (Jadi et al., 2012).

The above are just a few examples of modeling and
experimental studies suggesting that local spikes enable dendritic
branches to implement nonlinear integration modes (Mel, 1993;
Häusser et al., 2000; Gasparini et al., 2004, Polsky et al., 2004;
Losonczy and Magee, 2006; Makara and Magee, 2013), thus
conferring enhanced flexibility in neuronal information proces-
sing. In order to exploit this additional processing power of
nonlinear dendrites, synaptic input should be such that the whole
range of possible dendritic responses are explored, including the
generation of dendritic spikes. As discussed in Sections 2.1 and 2.2,
the spatial arrangement of synaptic inputs in dendritic branches
can provide a way to realize this goal.

2.1. Effect of spatial synaptic arrangement on dendritic integration:
distributed connectivity and linear integration

Distributed synaptic inputs, irrespectively of their location
within the neuron, have been suggested to summate linearly, a
result attributed to the elaborated biophysical profile of pyramidal
neuron dendrites (Cash and Yuste, 1999; Yuste, 2011). This linear
integration mode may be particularly useful when synaptic input
is dispersed uniformly throughout the dendritic tree, for example

Fig. 1. Dendritic structure and plasticity. Each dendritic tree (apical or basal) in pyramidal neurons can be subdivided to a number of dendrites (dendritic subtrees connected
to the apical trunk or the soma). Thin terminal branches are the main targets of excitation in the cerebral cortex. There, synaptic inputs can be organized in the following ways:
(1) they can be localized in the same dendritic branch without specific spatial arrangement (in-branch localization), (2) they can form anatomical clusters, whereby spines
form morphologically distinct groups of several spine heads located in distances less than 5 mm from each other within stretches of a given branch and (3) they can form
functional clusters where spine density is uniform but nearby synapses (located within 10–20 mm) are activated synchronously. The implications of these different
arrangements of connectivity at the dendritic level are discussed in Section 2.

G. Kastellakis et al. / Progress in Neurobiology 126 (2015) 19–35 21

From Synaptic clustering within dendrites: An emerging theory of
memory formation. Kastellakis et al (2015)

ADE fires when the sum of the
connected input values multiplied by
their respective synaptic weights within
an ADE reaches a threshold - which is
learned homeostatically.

Address Decoders
(ADs) accessing a 2D

SBC memory

9

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

.
. . .

. . .

.
. . .

. . .Address Decoder 2

. . .
. . .

. . .
. . .
. . .

. . .

Ad
dr

es
s D

ec
od

er
 1

. . .
. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

This is a 2D memory; 3D and higher
(using more ADs) are also of interest.

Widths of SBC match the length of ADs
e.g. 1,024 elements.

depth = f(# classes)

<- activated memory position

Activation pattern is sparse i.e. only a
small percentage of the ADEs in each
AD will fire for any given input.

Each coincidence of active ADEs between
ADs activates a memory location that
reads or writes information about the
class which has activated it.

Class information held
within SBC memory

10

‘Side view’ of SBC memory, showing
‘depth’ which varies with number
of classes in problem. In this case, 10
classes with ‘one-hot’ coding meaning
10 bit cells per memory position.

⇐ Depth of SBC memory ⇒

1 2 3 4 5 6 7 8 9 10

<- Bits that were
set previously

Memory positions
activated by
coincident ADEs

<- Bits set by this
input

Writing to the SBC: go to all activated
memory positions & set the relevant
class bits if they are not already set.

Reading from the SBC: count bits set
over all activated memory positions &
choose class with the highest sum.

Assumes ‘one-hot’ encoding. If classes
are coded differently then another
encoding/decoding process required.

3 activations are
shown, and in this
case the input is
from class 6.

Basic results from
MNIST

(10 classes balanced)

• AD lengths = 2,048
• 4x ADs with { 6, 8, 10, 12 } widths
 of synapses
• AD target firing ~1% per input
• synapses spatially clustered and
 then structural plasticity used to
 home in on features
10x 2D SBCs:
• 6x full-size between ADs
• 4x half-size within ADs
• 42MB memory for full occupancy

65	

70	

75	

80	

85	

90	

95	

100	

0	 20	 40	 60	 80	 100	 120	

Test	noise	SD	

MNIST	accuracy	by	Training	noise	SD	for	BitBrain	-	Gaussian	noise	

0	

20	

40	

60	

80	

100	

120	

11

0	

20	

40	

60	

80	

100	

120	

68	

72	

76	

80	

84	

88	

92	

96	

100	

0	

20	

40	

60	

80	

100	

120	

Training	noise	SD	
Test	noise	SD	

MNIST	accuracy	in	%	for	BitBrain	with	Gaussian	noise		

96-100	

92-96	

88-92	

84-88	

80-84	

76-80	

72-76	

68-72	

MNIST with
LeNet-5

• Early but respected CNN
 designed for character
 recognition:
https://en.wikipedia.org/wiki/LeNet

• max 100 epochs
• early stopping, ‘patience’ = 5
• sigmoidal activations
• ‘static’ noise

0	
5	
10	
15	
20	
25	
30	
35	
40	
45	
50	
55	
60	
65	
70	
75	
80	
85	
90	
95	

100	

0	 20	 40	 60	 80	 100	 120	

Test	noise	SD	

MNIST	accuracy	by	Training	noise	SD	for	LeNet-5	-	bounded	pixels		

0	

20	

40	

60	

80	

100	

120	

12

https://en.wikipedia.org/wiki/LeNet

MNIST
robustness
comparison
BitBrain vs
LeNet-5

MNIST
robustness
comparison
BitBrain vs
CapsNet

Basic results from
EMNIST

(62 classes unbalanced)

• BitBrain setup identical to
 MNIST
• much harder problem
• very unbalanced
• natural class aliasing:

{ o, O, 0 }, { i, I, l, 1 }, { s, S, 5 }, { B, 8 }

30	

35	

40	

45	

50	

55	

60	

65	

70	

75	

80	

0	 20	 40	 60	 80	 100	 120	

Test	noise	SD	

EMNIST	accuracy	by	Training	noise	SD	for	BitBrain	-	Gaussian	noise	

0	

20	

40	

60	

80	

100	

120	

15

EMNIST
robustness
comparison
BitBrain vs
LeNet-5

EMNIST
robustness
comparison
BitBrain vs
CapsNet

18

MNIST comparison
with other single-
pass methods - 1

• Red bars are CNNs trained for
only one epoch

• Blue bars are specifically
designed single-pass classification
methods

• References for all methods are in
our upcoming paper

MNIST comparison with other single-pass methods - 2

19

BitBrain compared with single-pass SVM methods for two-class problems.
- best results are in bold.

SVM results from: Piyush Rai, Hal III, and Suresh Venkatasubramanian. Streamed learning: One-pass SVMs.
IJCAI International Joint Conference on Artificial Intelligence, 2009.

libSVM Perceptron Pegasos
1

Pegasos
20 LASVM StreamSVM

1
StreamSVM

2 BitBrain

0 vs 1 99.52 99.47 95.06 99.48 98.82 99.34 99.71 99.95
8 vs 9 96.57 95.90 69.41 90.62 90.32 84.75 94.70 98.49

University of Manchester - confidential 20

University of Manchester - confidential 21

22

SpiNNaker
• A million ARM processors in one

computer

• Able to model about 1% of the
human brain…

• …or 10 mice!

SpiNNaker
machines

SpiNNaker chip
(18 ARM cores)

SpiNNaker board
(864 ARM cores)

• HBP platform
• 1M cores
• 11 cabinets

(including server)

• Launch 30 March 2016
• then 500k cores
• ~450 remote users
• 5M SpiNNaker jobs run

24

Distributed
implementation of

BitBrain on SpiNNaker

• BitBrain was designed to be
compatible with conventional
CPUs, but also with energy-
efficient, distributed computers,
such as SpiNNaker.

• The algorithm can be spread
among arbitrarily many cores on
SpiNNaker, and thus can make full
use of its inherent parallelism.

Address Decoder 2/4

2048 ADEs

SBC memory 1/6

Ad
dr

es
s

D
ec

od
er

 1
/4

256
ADEs___

25

Distributed
implementation of

BitBrain on SpiNNaker

Example implementation:

• 4 x 8 = 32 ADE cores

• 6 x 64 = 384 SBC cores

Combine the results and
construct a confusion matrix

AD-6 AD-12AD-8 AD-10

SBC 6-8 SBC 6-10 SBC 6-12 SBC 8-10 SBC 8-12 SBC 10-12

Host
machine

Input data

8 x

64 x

Calculate feature
coincidences

Calculate
firing patterns

26

Conclusions

BitBrain status:
• novel single-pass learning mechanism
• accurate inference – best in ‘single-pass’ class
• good robustness to imperfect inputs
• simple & energy-efficient operation (no floating-point or backpropagation)
• continuous and single-shot learning
• single-thread BitBrain on 3.2GHz Apple M1 gives 10k inferences in 0.42 secs
• implementations on Raspberry Pi & SpiNNaker

Improvements already investigated:
• ‘jitter’/data augmentation – +~1% on MNIST
• weighting of counts by occupancy – +~1% on MNIST

To do:
• more benchmarks, e.g.: CIFAR-10 & -100, German traffic sign database…
• CNN front end (in progress)
• layers of SBC memories
• application to different types of data – time series, DNA, abstract codes
• differing delays on synaptic connections for spatio-temporal patterns
• theory – connection to kernel methods?

28

SpiNNaker2 job
opportunities!

https://spinncloud.softgarden.io/en/vacancies

Join us:

Large-scale SystemEdge-based Systems

Intermediate Graph Representation

Partition and Mapping

Bare-metal Deployment

• Large NLP
Models

• Brain
simulation

• Highly
parallel
control

Optimization
Loop

High-level Frameworks
(Neuromorphic, Machine

Learning, Hybrid)

Sponsored by:

Copyright Notice
This presentation in this publication was presented as a tinyML® EMEA Innovation Forum. The content
reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this
publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of
the authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org

