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Photo-Realistic Experience on Mobile Devices

• Entertainment (games, sports, movies, music performance, …)
• Productivity (virtual office, meeting room, …)

[https://www.apple.com/apple-vision-pro/] [Spatial VR meeting app]



How to Obtain Virtual Objects/Scenes from 
Images? 
• Recently (in 2020), neural rendering (aka neural 

radiance field, NeRF) was proposed
• It enables us to train a neural network (FQ), with 

captured images, to generate novel view images

[NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis]



MLP for Radiance Field (Color and Density)

[NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis]
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Volume Rendering: Alpha Composition

Transmittance = ray survival prob. on 1 … i-1

probability of surface 

wi, weight of sample point i

[NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis]



3D Models Trained from Images
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[https://www.youtube.com/watch?v=JuH79E8rdKc]
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High Compute Cost of NeRF

• Assume a VR headset with 1440x1600 pixels, 90Hz
• At each pixel, we run 8-layer MLP of 256 hidden dimension on 256 sample points
• Total # multiplications = 1440x1600 x 90 x 256 x 256x256x7 = 2.4 x 1016 = 24 Peta 

multiplications/second 
• ~ 1000X more compute than 50 TOPS (of future mobile NPU) is needed for real time

• Methods for compute cost reduction
• Voxel grid to exploit pre-computation
• Mesh to exploit existing graphics pipeline
• Light field network to exploit existing CNN acceleration
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PlenOctree (ICCV 21)
Train NeRF, Build a Voxel Grid and Fine-tune It
• NeRF-SH, f(x)
• Color, c(d; k)

S: sigmoid

[PlenOctrees for Real-time Rendering of Neural Radiance Fields]



>1000X Faster than NeRF

• Low compute cost/sample point
• Voxel grid contains pre-computed 

values 
• Rendering requires simple 

computation on the pre-computed 
values

• Small # sample points/ray
• Sparsity to skip compute on empty 

space
• Visibility to skip compute on unseen 

space, e.g., interior of object

[PlenOctrees for Real-time Rendering of Neural Radiance Fields]



Training Voxel Grid, From Scratch Without MLP, 
is Much Faster!

[Plenoxels: Radiance Fields without Neural Networks]
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How to Exploit Existing Fast Rendering 
Graphics Pipeline on GPU?
• Traditional rendering pipeline from mesh to pixel

• Directly training a mesh model with captured images 
• DIB-R++, MobileNeRF, …

• Training NeRF and build a mesh from it (via marching cube)
• Neural Duplex, Re-Rend, …

[https://developer.mozilla.org/en-US/docs/Games/Techniques/3D_on_the_web/Basic_theory]



Differentiable Renderer (DIB-R)

• CNN is trained to give mesh, texture (albedo) and light parameters 
(spherical harmonics approximation coefficients of environment map)

[Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer]



How to Learn Vertex 
Coordinates via SGD?
• Exploit the relationship btw pixel 

color and vertex coordinates
• Given (x1,y1), (x2,y2), (x3,y3)

• Color Ii

[Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer]
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Differentiable 
Rasterization
• Baycentric interpolation of vertex 

attributes, e.g., color

• Vertex coordinates, v’s and attributes 
(color), u’s can be learned via SGD

[Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer]



MobileNeRF Directly Learns Mesh and Texture

• Exploit the existing graphics rendering pipeline
• Mesh + texture + viewpoint à rasterization (feature) à shader (MLP) for color

• ~50 frames/sec on iPhone Xs

[MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures]



Training MobileNeRF

• Start with an initial grid mesh, optimize for vertex positions as well as 
feature/opacity/color MLPs
• Given a ray
• Interpolation of texture feature on ray-mesh intersections
• Interpolated feature à color on sample point à pixel color via alpha composition

[MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures]



MobileNeRF Runs 50 Frames/Sec on iPhoneXS
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[MobileNeRF Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures]



Given a Trained NeRF Model, Build a Mesh 
and Exploit Graphics Pipeline: Re-ReND Case
• Mesh (w/ texture) building via Marching Cube method
• At ray-triangle intersection, cheap color computation with texture 

(dot products of UVW and b )
• Up to ~1000 frames per second on NVIDIA GPU 3090

[Re-ReND: Real-time Rendering of NeRFs across Devices]
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Summary and Prospect

• >1000 neural rendering papers (arxiv) since the NeRF paper in 2020

• Drastic (>1000X) improvements of compute efficiency in only three years
• Voxel grid to exploit pre-computation

• Mesh to exploit existing graphics pipeline

• Light field network to exploit CNN acceleration 

• Prospect: Efficient models for real-time immersive photo-realism 
• Relighting, dynamic scene, large scale and large language model (LLM)



Towards Relighting: 
Inverse Rendering on Voxel Grid (TensoIR)

[TensoIR: Tensorial Inverse Rendering]

• Can render images on 
new lighting
• By separately learning 

material and shape 
• w.r.t. radiance (color) 

in NeRF

• Very slow rendering 
due to high compute 
cost in rendering eqn
• Visibility
• Indirect illumination 



Dynamic Scene (aka. Free Viewpoint Video)
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[https://hypernerf.github.io]



Large-Scale NeRF: Block NeRF

• Consists of small block-level NeRF models
• e.g., city center in San Francisco

[Block-NeRF: Scalable Large Scene Neural View Synthesis ]



[Block-NeRF: Scalable Large Scene Neural View Synthesis ]



Multi-Modal 3D Model
e.g., Text Input based Object Localization 

[LERF: Language Embedded Radiance Fields]



Summary and Prospect

• >1000 neural rendering papers since the NeRF paper in 2020

• Drastic (>1000X) improvements of compute efficiency in only three years
• Voxel grid to exploit pre-computation
• Mesh to exploit existing graphics pipeline
• Light field network to exploit CNN acceleration 

• Prospect: Efficient models for real-time immersive photo-realism 
• Relighting, dynamic scene, large scale and large language model (LLM)
• >1000X more efficient models and implementations are needed 

• Compute cost, model size, training speed, …



Thank You!
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