
Towards Efficient Neural Rendering

Sungjoo Yoo

Computing Memory Architecture Lab.
Computer Science and Engineering

Seoul National University



Agenda

• Introduction to neural rendering

• Problem: high computation cost

• Efficient model #1: voxel grid

• Efficient model #2: mesh

• Summary and prospect



Photo-Realistic Experience on Mobile Devices

• Entertainment (games, sports, movies, music performance, …)
• Productivity (virtual office, meeting room, …)

[https://www.apple.com/apple-vision-pro/] [Spatial VR meeting app]



How to Obtain Virtual Objects/Scenes from 
Images? 
• Recently (in 2020), neural rendering (aka neural 

radiance field, NeRF) was proposed
• It enables us to train a neural network (FQ), with 

captured images, to generate novel view images

[NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis]



MLP for Radiance Field (Color and Density)

[NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis]

(x,y,z)

(x,y,z)

(q, f)

density

color



Volume Rendering: Alpha Composition

Transmittance = ray survival prob. on 1 … i-1

probability of surface 

wi, weight of sample point i

[NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis]



3D Models Trained from Images

7

[https://www.youtube.com/watch?v=JuH79E8rdKc]



Agenda

• Introduction to neural rendering

• Problem: high computation cost

• Efficient model #1: voxel grid

• Efficient model #2: mesh

• Summary and prospect



High Compute Cost of NeRF

• Assume a VR headset with 1440x1600 pixels, 90Hz
• At each pixel, we run 8-layer MLP of 256 hidden dimension on 256 sample points
• Total # multiplications = 1440x1600 x 90 x 256 x 256x256x7 = 2.4 x 1016 = 24 Peta 

multiplications/second 
• ~ 1000X more compute than 50 TOPS (of future mobile NPU) is needed for real time

• Methods for compute cost reduction
• Voxel grid to exploit pre-computation
• Mesh to exploit existing graphics pipeline
• Light field network to exploit existing CNN acceleration



Agenda

• Introduction to neural rendering

• Problem: high computation cost

• Efficient method #1: voxel grid

• Efficient method #2: mesh

• Summary and prospect



PlenOctree (ICCV 21)
Train NeRF, Build a Voxel Grid and Fine-tune It
• NeRF-SH, f(x)
• Color, c(d; k)

S: sigmoid

[PlenOctrees for Real-time Rendering of Neural Radiance Fields]



>1000X Faster than NeRF

• Low compute cost/sample point
• Voxel grid contains pre-computed 

values 
• Rendering requires simple 

computation on the pre-computed 
values

• Small # sample points/ray
• Sparsity to skip compute on empty 

space
• Visibility to skip compute on unseen 

space, e.g., interior of object

[PlenOctrees for Real-time Rendering of Neural Radiance Fields]



Training Voxel Grid, From Scratch Without MLP, 
is Much Faster!

[Plenoxels: Radiance Fields without Neural Networks]



Agenda

• Introduction to neural rendering

• Problem: high computation cost

• Efficient method #1: voxel grid

• Efficient method #2: mesh

• Summary and prospect



How to Exploit Existing Fast Rendering 
Graphics Pipeline on GPU?
• Traditional rendering pipeline from mesh to pixel

• Directly training a mesh model with captured images 
• DIB-R++, MobileNeRF, …

• Training NeRF and build a mesh from it (via marching cube)
• Neural Duplex, Re-Rend, …

[https://developer.mozilla.org/en-US/docs/Games/Techniques/3D_on_the_web/Basic_theory]



Differentiable Renderer (DIB-R)

• CNN is trained to give mesh, texture (albedo) and light parameters 
(spherical harmonics approximation coefficients of environment map)

[Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer]



How to Learn Vertex 
Coordinates via SGD?
• Exploit the relationship btw pixel 

color and vertex coordinates
• Given (x1,y1), (x2,y2), (x3,y3)

• Color Ii

[Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer]

(x1,y1)

(x3,y3)

(x,y)

(x2,y2)

l1

l2 l3

[Wikipedia]

Same
equation



Differentiable 
Rasterization
• Baycentric interpolation of vertex 

attributes, e.g., color

• Vertex coordinates, v’s and attributes 
(color), u’s can be learned via SGD

[Learning to Predict 3D Objects with an Interpolation-based Differentiable Renderer]



MobileNeRF Directly Learns Mesh and Texture

• Exploit the existing graphics rendering pipeline
• Mesh + texture + viewpoint à rasterization (feature) à shader (MLP) for color

• ~50 frames/sec on iPhone Xs

[MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures]



Training MobileNeRF

• Start with an initial grid mesh, optimize for vertex positions as well as 
feature/opacity/color MLPs
• Given a ray
• Interpolation of texture feature on ray-mesh intersections
• Interpolated feature à color on sample point à pixel color via alpha composition

[MobileNeRF: Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures]



MobileNeRF Runs 50 Frames/Sec on iPhoneXS

21

[MobileNeRF Exploiting the Polygon Rasterization Pipeline for Efficient Neural Field Rendering on Mobile Architectures]



Given a Trained NeRF Model, Build a Mesh 
and Exploit Graphics Pipeline: Re-ReND Case
• Mesh (w/ texture) building via Marching Cube method
• At ray-triangle intersection, cheap color computation with texture 

(dot products of UVW and b )
• Up to ~1000 frames per second on NVIDIA GPU 3090

[Re-ReND: Real-time Rendering of NeRFs across Devices]



Agenda

• Introduction to neural rendering

• Problem: high computation cost

• Efficient method #1: voxel grid

• Efficient method #2: mesh

• Summary and prospect



Summary and Prospect

• >1000 neural rendering papers (arxiv) since the NeRF paper in 2020

• Drastic (>1000X) improvements of compute efficiency in only three years
• Voxel grid to exploit pre-computation

• Mesh to exploit existing graphics pipeline

• Light field network to exploit CNN acceleration 

• Prospect: Efficient models for real-time immersive photo-realism 
• Relighting, dynamic scene, large scale and large language model (LLM)



Towards Relighting: 
Inverse Rendering on Voxel Grid (TensoIR)

[TensoIR: Tensorial Inverse Rendering]

• Can render images on 
new lighting
• By separately learning 

material and shape 
• w.r.t. radiance (color) 

in NeRF

• Very slow rendering 
due to high compute 
cost in rendering eqn
• Visibility
• Indirect illumination 



Dynamic Scene (aka. Free Viewpoint Video)

26

[https://hypernerf.github.io]



Large-Scale NeRF: Block NeRF

• Consists of small block-level NeRF models
• e.g., city center in San Francisco

[Block-NeRF: Scalable Large Scene Neural View Synthesis ]



[Block-NeRF: Scalable Large Scene Neural View Synthesis ]



Multi-Modal 3D Model
e.g., Text Input based Object Localization 

[LERF: Language Embedded Radiance Fields]



Summary and Prospect

• >1000 neural rendering papers since the NeRF paper in 2020

• Drastic (>1000X) improvements of compute efficiency in only three years
• Voxel grid to exploit pre-computation
• Mesh to exploit existing graphics pipeline
• Light field network to exploit CNN acceleration 

• Prospect: Efficient models for real-time immersive photo-realism 
• Relighting, dynamic scene, large scale and large language model (LLM)
• >1000X more efficient models and implementations are needed 

• Compute cost, model size, training speed, …



Thank You!



Copyright Notice
This presentation in this publication was presented as a tinyML® Asia Technical Forum. The content 
reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in 
this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of 
the authors and their respective companies and may contain copyrighted material. As such, it is strongly 
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions 
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org


