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The problem of learning at edge

16/11/2023

• Error-Backpropagation is computationally expensive -> High Power

• Requires a symmetric backward pathway to pass full precision values 
• Backpropagation requires precise and synchronous orchestration of gradient calculation and weight 

updates. It leads to a ‘locking effect’ when implemented in hardware
• The von-Neumann bottleneck. We need co-located memory and compute in hardware
• Possible for small networks, but not scalable

• The result: Most solutions are only inference at edge rather than learning at edge 
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Lessons from nature
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• Communication sparsity

• Computation sparsity
• Massive parallelism

• Local Independence
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Communication Sparsity
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• Information coding in spikes

• Spike only when necessary
• Neuromorphic sensors have proved to be energy efficient solutions for sampling data with high 

temporal precision yet generating sparse data rates
• Timing is key
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Computation Sparsity
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• Asynchronous computing at the arrival of spikes

• Long periods of boredom with sudden bursts of activity!
• Sensors like event-based cameras solve it at the sensing end. Need similar capabilities at the 

processing end of things. 
• Compute only when necessary
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Local Independence and Parallelism
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• Local learning vs Global learning

• Scalable network architectures that can be decomposed into entities that can operate independently
• The smaller the better

• The similar the better
• Fault tolerant and extensible
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Event-driven Neural Architectures

Event-driven 
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Neural Architectures 

Asynchronous Distributed and Scalable Compositional and Inductive Priors
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The SNN Zoo

16/11/2023

Rate Coding

Temporal Coding

Local 
Learning

Back
Propagation

Bio-realistic

Bio-simplistic
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Abstraction of Spiking Neural Networks
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Izhikevich, E. M. (2004). Which model to use for cortical spiking neurons? IEEE transactions on neural networks, 
15(5).
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Timesurfaces and dot products for abstraction of spiking neurons 
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Winner-Takes-All and Selection Thresholds
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Unsupervised feature extraction using selection thresholds
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Afshar, Saeed, et al. (2020) "Event-based feature extraction using adaptive selection 
thresholds." Sensors 
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Role of weights and thresholds

16/11/2023

Event-driven Neural Architectures - tinyML Asia 2023

PAGE 14



Supervised learning
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Spike-Timing-Dependent Threshold Adaptation
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Optimised Deep Event-driven SNN Architecture (ODESA)
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Bethi, Y., Xu, Y., Cohen, G., Van Schaik, A. and Afshar, S., 2022. An optimized deep spiking neural network 
architecture without gradients. IEEE Access, 10
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Local Competition and Global Cooperation
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Local competition via Winner-Takes-All Global cooperation through binary attention 
signals 



ODESA results
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ODESA Results
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Target
Spikes

Input
Spikes

Predicted
Spikes

Oxford Spike Pattern
0.67 IOU per input spike
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ODESA Results
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ODESA Results
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ODESA Results
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How deep is deep? 
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Advantages of ODESA

• Online continuous learning 

• Learning hierarchical spatio-temporal features 
simultaneously at different time scales

• An end-to-end spiking architecture 

• Event-driven and computationally efficient

• Gradient-free learning. An alternative to Error 
Backpropagation, and gradient descent

• Sparse activity due to hard WTA 

• Modular and extensible

16/11/2023
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A digital implementation of ODESA
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Neuron DesignSynapse Design
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A digital implementation of ODESA
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Layer Design
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A digital implementation of ODESA
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Mehrabi, Ali, et al. (2023) "An Optimized Multi-layer Spiking Neural Network implementation in FPGA Without Multipliers." Procedia Computer 
Science
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Conclusion
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Conclusion
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• Spike-timing-dependent threshold adaptation is the underlying 
principle for all the ODESA architectures

• The operation and memory of each individual computational 
component of ODESA networks are independent of each other, and 
thus enable scalability unlike ANNs

• The entirety of computation in all the layers and components of 
ODESA architectures is event-driven and thus asynchronous. 

• The entirety of communication between each component in ODESA 
architectures including the feedback signals is binary event-based

• The solutions offer blueprints for future neuromorphic hardware 
design
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Email: Y.Bethi@westernsydney.edu.au

Thank You!

Check out: https://www.westernsydney.edu.au/icns/masters_program



Additional Slides
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Convolutional ODESA 
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Conv Results
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Conv Results
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Tactile MNIST
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Figures from: See, H.H., Lim, B., Li, S., Yao, H., Cheng, W., Soh, H. and Tee, B.C., 2020. ST-MNIST--The Spiking Tactile MNIST Neuromorphic Dataset. arXiv preprint 
arXiv:2005.04319.
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Tactile MNIST
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Conv Results
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Actor layer with Episodic Context Memory
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Actor Critic Architecture
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Grid Worlds 
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Optimized Event-Driven Spiking Neural Network for Low-
Power Neuromorphic Platform
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