tinyML Summit
Enabling Ultra-low Power Machine Learning at the Edge

Products and applications enabled by tinyML

March 28 – 29, 2023

www.tinyML.org
Gas metal arc welding (GMAW), sometimes referred to by its subtypes metal inert gas (MIG) and metal active gas (MAG) is a welding process in which an electric arc forms between a consumable MIG wire electrode and the workpiece metal(s), which heats the workpiece metal(s), causing them to fuse (melt and join). Along with the wire electrode, a shielding gas feeds through the welding gun, which shields the process from atmospheric contamination.
#4 = Contact Tip
GMAW Defects which are difficult to detect with conventional means

Porosity, caused by:

• Too much/little flux Gas
• Oil on parts
• Excessive “stick out” or distance between the contact tip and the part
• Etc.
GMAW Defects which are difficult to detect with conventional means

Burn Through, cause by:

- Wire Feed Restriction, Tangled Wire Barrel
- Loose Drive Rolls
- Wire Conduit Detachment
- Etc.
Goals

- Reduce 100% Human Visual Inspection to anomaly based only.
- Improve Quality.
- Improve Throughput.
Reason for current 100% inspection

• Once parts are loaded at the beginning of the line, they are not inspected again until end of line. This is why 100% inspection is performed at the baseline cell.
GMAW

Defects which are difficult to detect with conventional means

• Conventional means of anomaly detection have several limitations:
 • Require additional hardware.
 • Low sampling rate.
 • False negatives/ false positives.
 • No data logging.
• These defects can be audibly heard by a person. Can we give the robot that capability?
Project: Acoustic Detection using tinyML
Why tinyML?

• Realtime Requirements: Fast Model Update Time Required for Anomaly Reaction.

• Availability: The emergent field of tinyML now facilitates this project which we have been trying to accomplish since 2021.

• On inexpensive, available, easy-to-mount hardware
Challenge #1: How to interface with model?
Solution: NodeRed Event Engine
MQTT direct to Siemens PLC
Challenge #2: How to store data?

- Influx DB latest version with FLUX query language. Time series optimized database with vastly superior performance compared to established SQL databases.
Challenge #3: How to view Data? Solution: Grafana

Variant Type
- Green Line is Arc Established
- Yellow Line is Confidence Level Good
- Orange Line is RMS Value Confidence Good /Weld

Per Weld Details
- RMS by Weld
- RMS Min. Setpoint by Weld
Viewing welds over time

RMS by Variant Robot, Weld, Fixture

RMS Min. Setpoint Require Inspection
Challenge #4: Model Training and Workflow Efficiency

- Initial classification model had three classes. Training data was from multiple sources and recorded on different hardware. Due to low success rate we re-strategized to a single classification model (Good Welding) and recorded all training data on the same hardware that the model runs on/with.
- Started a Design of Experiment to discover model parameters and improve training workflow.
- Automated the recording of training data using Nodered.
- Developed “Loopback Testing” methods for model testing offline against recorded anomalies.
- Reduced the number of epochs during training to reduce training time.
Imagimob
Design
Environment:
Track labeling
Imagimob Design Environment: Pre-processor Settings

<table>
<thead>
<tr>
<th>Name</th>
<th>Shape</th>
<th>Frequency</th>
<th>Rate</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sliding Window (data points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window Shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stride</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffer Multiplier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hamming smoothing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symmetric</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real Discrete Fourier Transform</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frobenius norm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Axis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mel Filterbank</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Filters</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Rate (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Frequency Cutoff (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Frequency Cutoff (Hz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HTK formula</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Librosa formula</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logarithm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logarithm base</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clip</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sliding Window (data points)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Window Shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stride</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Buffer Multiplier</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Create Track from Preprocessor... Build Preprocessor...

Project successfully validated.
Challenge #5: PLC Integration?

- Developed PLC Function block to facilitate machine integration with model.
- RMS value of the confidence level was added for a better benchmark of weld quality.
Challenge #6:
PLC Integration?

- In addition to time windows on the confidence level, the RMS value of the confidence level was added for a better benchmark of weld quality.
Actual Arc Fault detected
Validation Testing
60% Gas Reduction
Validation Testing

100% Gas Reduction
Validation Testing
60-100% Gas Reduction
Validation Testing Seam Off Location
Validation Testing
Seam Off Location
Validation Testing
Incorrect weld wire. 0.040 vs 0.045
Key Lessons

• Ensure that optimal process state considers all process variables. In our case I had not considered contact tip life, upstream fixture source, or variant.

• Simplify D.O.E. as much as possible for greater chance of success. (I.E. single classification if using a classification model). Record training data with same hardware as the model will run on.

• Gain / Dynamic range is critical for training data, offline “loopback” testing and model run parameters.

• Classification labeling is critical for model performance. I.E. windowing of wave form.

• Speed of training iterations and testing is vital.

• Raspberry Pi4 is more than sufficient for application. TinyML Model uses 1% of one core. Currently all four cores are running under 15% in current configuration (Two Models Running).

• College intern contributions made this project possible. Encourage all to employ interns wherever possible.
Insights

- TinyML hardware needs industrial ethernet interface capability. Profinet, Ethercat, Ethernet IP. CAN is too slow and is outdated.
- Industrial space is ripe for hardware disruption. Current state is long delivery times, high cost, cloud centric approach. No low cost, industrial sensor tiles available.
- Acoustic anomaly detection has many use cases in industrial manufacturing.
- Proof of concept projects are difficult to get funding for. Imagimob enabled our project to occur with their pricing model and initial project support.
- Large language models can be very helpful in ML projects. C code samples, hardware (microphone) settings, pre-processor settings, SCL PLC code, and many others. We are using LLMs to increase efficiency nearly everyday now.
Next Steps

• Add anomaly detection to all robots of the test cells.
• Improve spectral analysis of waveforms
• Program machine to send to inspection only parts which fall below the minimum threshold for RMS setpoint.
• Find more suitable hardware
• Test other use cases in the manufacturing environment.
• Add “Stop Process” RMS threshold.
• Improve robot dress package for acoustic equipment.
• Improve sampling rate below the current 400 ms.
Challenges

Severe environment
Copyright Notice

This presentation in this publication was presented at the tinyML® Summit (March 28 - 29, 2023). The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org