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Deep Learning holds great promise but …

Efficiency is key!

The Promise of Deep Learning



Bigger and Bigger!



Bigger is better?
With the use of powerful GPUs we can train bigger models but …

To deploy on the edge we need:
● Smaller models
● … and faster models
● … that are still accurate

What about deployment?



About 
Embedl

● Specialised in optimization of Deep Learning models

● Source code available - Not a black box!

● Empower teams of data scientists and DL engineers 
with powerful optimization algorithms and tools

● Based in the automotive capital of Sweden -
Gothenburg
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Focus Today: Deep Neural Network Pruning
Making a model faster with minimal accuracy loss

✓ Latency 
✓ Power 
✓ Runtime memory 

Removing redundant and 
unnecessary connections or 
structures from the network

★Original model 
Starting point for pruning



Introduction to PruningIntroduction to Pruning

When, how, what, and where to prune?



Introduction to Pruning
Pipeline

Before, during, or after training

When to prune?

Introduction to Pruning



Introduction to Pruning

Structure
Structured vs unstructured

Pipeline
Retraining from scratch

When to prune?

How to prune?

Channels Out

Channels In

Height x 
Width

Unstructured

zeros/removed

unchanged

● Structured pruning results in speedup on most hardware

● Today's results focus on structured pruning 

2:4 Block-
Sparse

Channel/Filter



Introduction to Pruning

Structure
Structured pruning

Pipeline
Retraining from scratch

Scoring
Parameters scored based on: 

magnitude, importance, gradients etc.

When to prune?

How to prune?

What to prune?

L1-Norm magnitude pruning
- Li, et al., arXiv:1608.08710 (2016) -

Prune filters with the lowest L1-norm

Assumption: Weights of small magnitude have a small 
impact on the performance of a model.

- LeCun, et al., "Optimal brain damage." (1989) -



Introduction to Pruning

Method
Uniform vs non-uniform pruning

Where to prune?

Structure
Structured pruning

Pipeline
Retraining from scratch

Scoring
L1-Norm Magnitude Pruning

When to prune?

How to prune?

What to prune?



What are the effects of 
structured pruning on the 
optimal hyperparameters?

Hyperparameters under Structured Pruning

Filter/Channel Pruning changes the architecture of 
the CNN, making it smaller

zeros/removed

unchanged

- ”A priori, models of different sizes don’t have any reason to share the optimal HPs.” -
G. Yang, et al., arXiv:2203.03466 (2022)



Experimental Pipeline
Approximate 

performance landscape 
of the basemodel

Approximate 
performance landscape 

of the pruned model

Prune single basemodel 
to various degrees

Uniform and non-uniform L1-norm 
magnitude pruning using the 

‘Retraining from Scratch’ pipeline● Grid points are interpolated

● Points outside the top 15% (top-1 accuracy) are 
removed and inter-/extrapolated

smoother visualisation

We span a grid in the weight decay 
and learning rate space and 
evaluate the top-1 accuracy 
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ResNet-56 on CIFAR-10
Basemodel 
(unpruned)

60% Uniform 20% Uniform 60% Non-uniform 20% Non-uniform
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Magnitude Pruning - Retraining from scratch

● The performance landscape remains relatively stable across 
different structured pruning methods 



ResNet-56 on CIFAR-10

94.05 93.25 90.42 93.18 90.33
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Magnitude Pruning - Retraining from scratch

● The performance landscape remains relatively stable across 
different structured pruning methods 

● Optimal hyperparameters of the basemodel can serve as a 
reasonable starting point for the pruned model



94.05 93.25 90.42 93.18 90.33

We apply a Gaussian model to the set of optimal HPs  

The confidence ellipse describes the region in which 86.47%  
of optimal hyperparameter configurations fall

ResNet-56 on CIFAR-10
Basemodel 
(unpruned)
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model performance is within the top 1.0% 

Magnitude Pruning - Retraining from scratch



MobileNetV2 on CIFAR-10

Weight decay (10^)

Le
ar

ni
ng

 ra
te

 (1
0^

)

60% Uniform 40% Uniform 60% Non-uniform 40% Non-uniformBasemodel 
(unpruned)

Magnitude Pruning - Retraining from scratch

The confidence ellipse describes the region in which 86.47% 
of optimal hyperparameter configurations fall

model performance is within the top 0.5% 

model performance is within the top 1.0% 



ResNet-50 on ImageNet

Weight decay (10^)

Basemodel (unpruned)
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75.83 70.17

Magnitude Pruning - Retraining from scratch

The confidence ellipse describes the region in which 86.47% 
of optimal hyperparameter configurations fall

model performance is within the top 1.0% 

model performance is within the top 0.5% 



But wait …
What about Fine-tuning?



But wait …
What about Fine-tuning?



ResNet-56 on CIFAR-10

60% Non-uniform 20% Non-uniform

Retraining Fine-tuningRetraining Fine-tuning
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> 92.75% acc > 89.75% acc 

> 93.50% acc > 90.50% acc 

Magnitude Pruning



> 94.25% acc > 93.50% acc 

MobileNetV2 on CIFAR-10

60% Non-uniform 40% Non-uniform

Retraining Fine-tuningRetraining Fine-tuning

Weight decay (10^)
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> 95.00% acc > 94.25% acc 

Magnitude Pruning



What have we seen today?

Importance of Pruning for 
deployment on the edge

Experiments on the impact of 
structured pruning on learning rate 

and weight decay 

Conclusions

Pruning (retraining from scratch) does not have a 
significant impact on the overall shape and 
structure of the WD-LR space

⟶ Optimal hyperparameters of the basemodel
can serve as a reasonable starting point for 
the pruned model

⟶ When fine-tuning we are more likely to fall 
within an optimal area 
○ model is more robust to HP changes

Are Hyperparameters Overrated?
From large models to tinyML
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○ Accuracy
○ Latency
○ Energy usage 
○ Runtime memory

Vitis AI by Xilinx

Cube32 by STMicro

OpenVINO by Intel

TensorRT by Nvidia

Neural Processing SDK 
by Qualcomm

eIQ Auto toolkit by NXP

TIDL by Texas 
Instruments

ARM NN by ARM

… by …
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