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• Training on (embedded) device is gaining interests in last years because of:

• Customization of the model to the user/scenario

• Privacy concerns

• Traditional backward propagation technique can be too resource-consuming to be 

deployed on MCUs

• We propose 𝝁𝑭𝑭

• Inspired by Forward Forward algorithm

• Based on Multivariate Ridge regression

Introduction
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• Training on device requires to update weights on the target

• Traditional back-propagation technique requires significant resources:

• Memory to store training data

• Memory to store training intermediate results (i.e., gradients)

• Computational power to compute gradients

• Different training techniques must be considered

The problem

The Forward-Forward algorithm: some preliminary investigations

Geoffrey Hinton (preprint – under review)



The Forward-Forward algorithm

• Each layer is considered separately

• Forward and backward passes are 

replaced with two forward passes

• Positive (i.e., real) data

to increase the goodness of the 

layers

• Negative (i.e., corrupted) data

to decrease the goodness of the 

layers



PROS

• Layers are updated independently

• Use only forward function

• Layers can be considered as black box

• Memory usage and computation power 

saving

CONS

• Good accuracy only for some types of 

networks

• Gradient computation still needed

• Required memory and computation 

power can be not suitable for MCUs

The Forward-Forward Algorithm



Proposed solution architecture

• Different loss function: 

Mean Square Error

• Training process 

becomes a multivariate 

Ridge Regression 

Problem

→ No iteration nor 

recursion is required to 

compute the weights

→ Predictable and 

fixed training time
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• Use case: dress classification on fashion-MNIST

• Classification task: fully connected (500 neurons) + ReLU

• Dataset is composed of 70,000 28x28 gray scale images 

• Nine experiments:

• 3, 4, and 5 classes

• 100, 200, and 300 samples for each class

• Labels are embedded inside images in the corners

• Negative data are created embedding wrong labels

• Target device: STM32H741I-DISCO

Experimental setup



Back propagation 100 training samples 200 training samples 300 training samples

3 classes 0.977 0.981 0.983

4 classes 0.960 0.965 0.966

5 classes 0.851 0.863 0.869

Experimental results - accuracy

𝝁𝑭𝑭 100 training samples 200 training samples 300 training samples

3 classes 0.936 0.942 0.945

4 classes 0.791 0.822 0.840

5 classes 0.679 0.732 0.770



𝝁𝑭𝑭 training time [ms] 100 training samples 200 training samples 300 training samples

3 classes 6,012 12,004 17,994

4 classes 8,009 16,000 23,989

5 classes 10,007 19,994 29,981

Experimental results - training time



• Resource usage of backward-propagation technique can prevent its adoption on 

embedded design because of power, time, and memory constraints

• Proposed 𝝁𝑭𝑭 combines the use of Positive and Negative data, MSE, and 

multivariate Ridge Regression to allow training on device with limited and 

predictable resources

• Future works will focus on extending proposed approach to different types of 

network topologies

Conclusions
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