
Exploiting
Forward-Forward based
algorithm for training
on device

Marco Lattuada

Fabrizio De Vita, Rawan M. A. Nawaiseh, Dario

Bruneo, Valeria Tomaselli, Mirko Falchetto

STMicroelectronics

• Training on (embedded) device is gaining interests in last years because of:

• Customization of the model to the user/scenario

• Privacy concerns

• Traditional backward propagation technique can be too resource-consuming to be

deployed on MCUs

• We propose 𝝁𝑭𝑭

• Inspired by Forward Forward algorithm

• Based on Multivariate Ridge regression

Introduction

2

• Training on device requires to update weights on the target

• Traditional back-propagation technique requires significant resources:

• Memory to store training data

• Memory to store training intermediate results (i.e., gradients)

• Computational power to compute gradients

• Different training techniques must be considered

The problem

The Forward-Forward algorithm: some preliminary investigations

Geoffrey Hinton (preprint – under review)

The Forward-Forward algorithm

• Each layer is considered separately

• Forward and backward passes are

replaced with two forward passes

• Positive (i.e., real) data

to increase the goodness of the

layers

• Negative (i.e., corrupted) data

to decrease the goodness of the

layers

PROS

• Layers are updated independently

• Use only forward function

• Layers can be considered as black box

• Memory usage and computation power

saving

CONS

• Good accuracy only for some types of

networks

• Gradient computation still needed

• Required memory and computation

power can be not suitable for MCUs

The Forward-Forward Algorithm

Proposed solution architecture

• Different loss function:

Mean Square Error

• Training process

becomes a multivariate

Ridge Regression

Problem

→ No iteration nor

recursion is required to

compute the weights

→ Predictable and

fixed training time

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑎𝑝𝑜𝑠)

Proposed solution algorithm

(𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑌 𝛽

𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(ො𝑎𝑝𝑜𝑠
2 , ො𝑎𝑛𝑒𝑔

2)

𝑐𝑜𝑛𝑐𝑎𝑡𝑒𝑛𝑎𝑡𝑒(𝜃,−𝜃)

𝜃

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑎𝑛𝑒𝑔)

𝑋

𝑌

ො𝑎𝑝𝑜𝑠
2

ො𝑎𝑛𝑒𝑔
2

𝐷𝑒𝑛𝑠𝑒(𝑋𝑝𝑜𝑠)

𝐷𝑒𝑛𝑠𝑒(𝑋𝑛𝑒𝑔)

𝑎𝑝𝑜𝑠

𝑎𝑛𝑒𝑔

𝑋𝑝𝑜𝑠

𝑋𝑛𝑒𝑔

𝜆

• Use case: dress classification on fashion-MNIST

• Classification task: fully connected (500 neurons) + ReLU

• Dataset is composed of 70,000 28x28 gray scale images

• Nine experiments:

• 3, 4, and 5 classes

• 100, 200, and 300 samples for each class

• Labels are embedded inside images in the corners

• Negative data are created embedding wrong labels

• Target device: STM32H741I-DISCO

Experimental setup

Back propagation 100 training samples 200 training samples 300 training samples

3 classes 0.977 0.981 0.983

4 classes 0.960 0.965 0.966

5 classes 0.851 0.863 0.869

Experimental results - accuracy

𝝁𝑭𝑭 100 training samples 200 training samples 300 training samples

3 classes 0.936 0.942 0.945

4 classes 0.791 0.822 0.840

5 classes 0.679 0.732 0.770

𝝁𝑭𝑭 training time [ms] 100 training samples 200 training samples 300 training samples

3 classes 6,012 12,004 17,994

4 classes 8,009 16,000 23,989

5 classes 10,007 19,994 29,981

Experimental results - training time

• Resource usage of backward-propagation technique can prevent its adoption on

embedded design because of power, time, and memory constraints

• Proposed 𝝁𝑭𝑭 combines the use of Positive and Negative data, MSE, and

multivariate Ridge Regression to allow training on device with limited and

predictable resources

• Future works will focus on extending proposed approach to different types of

network topologies

Conclusions

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries.

For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

Find out more at www.st.com

http://www.st.com/trademarks
http://www.st.com/

	Slide 1: Exploiting Forward-Forward based algorithm for training on device
	Slide 2: Introduction
	Slide 3: The problem
	Slide 4: The Forward-Forward algorithm
	Slide 5: The Forward-Forward Algorithm
	Slide 6: Proposed solution architecture
	Slide 7: Proposed solution algorithm
	Slide 8: Experimental setup
	Slide 9: Experimental results - accuracy
	Slide 10: Experimental results - training time
	Slide 11: Conclusions
	Slide 12

