

Exploiting Forward-Forward based algorithm for training on device

Marco Lattuada

Fabrizio De Vita, Rawan M. A. Nawaiseh, Dario Bruneo, Valeria Tomaselli, Mirko Falchetto

STMicroelectronics

Introduction

- Training on (embedded) device is gaining interests in last years because of:
 - Customization of the model to the user/scenario
 - Privacy concerns
- Traditional backward propagation technique can be too resource-consuming to be deployed on MCUs
- We propose μFF
 - Inspired by Forward Forward algorithm
 - Based on Multivariate Ridge regression

The problem

- Training on device requires to update weights on the target
- Traditional back-propagation technique requires significant resources:
 - Memory to store training data
 - Memory to store training intermediate results (i.e., gradients)
 - Computational power to compute gradients
- Different training techniques must be considered

The Forward-Forward algorithm: some preliminary investigations Geoffrey Hinton (preprint – under review)

The Forward-Forward algorithm

- Each layer is considered separately
- Forward and backward passes are replaced with two forward passes
 - Positive (i.e., real) data to increase the goodness of the layers
 - Negative (i.e., corrupted) data to decrease the goodness of the layers

The Forward-Forward Algorithm

PROS

- Layers are updated independently
- Use only forward function
 - Layers can be considered as black box
- Memory usage and computation power saving

CONS

- Good accuracy only for some types of networks
- Gradient computation still needed
- Required memory and computation power can be not suitable for MCUs

Proposed solution architecture

- Different loss function: Mean Square Error
- Training process becomes a multivariate Ridge Regression Problem → No iteration nor
 - recursion is required to compute the weights → Predictable and fixed training time

Proposed solution algorithm

Experimental setup

- Use case: dress classification on fashion-MNIST
- Classification task: fully connected (500 neurons) + ReLU
- Dataset is composed of 70,000 28x28 gray scale images
- Nine experiments:
 - 3, 4, and 5 classes
 - 100, 200, and 300 samples for each class
- Labels are embedded inside images in the corners
- Negative data are created embedding wrong labels
- Target device: STM32H741I-DISCO

Experimental results - accuracy

Back propagation	100 training samples	200 training samples	300 training samples
3 classes	0.977	0.981	0.983
4 classes	0.960	0.965	0.966
5 classes	0.851	0.863	0.869

μFF	100 training samples	200 training samples	300 training samples
3 classes	0.936	0.942	0.945
4 classes	0.791	0.822	0.840
5 classes	0.679	0.732	0.770

Experimental results - training time

<i>µFF</i> training time [ms]	100 training samples	200 training samples	300 training samples
3 classes	6,012	12,004	17,994
4 classes	8,009	16,000	23,989
5 classes	10,007	19,994	29,981

Conclusions

- Resource usage of backward-propagation technique can prevent its adoption on embedded design because of power, time, and memory constraints
- Proposed µFF combines the use of Positive and Negative data, MSE, and multivariate Ridge Regression to allow training on device with limited and predictable resources
- Future works will focus on extending proposed approach to different types of network topologies

Our technology starts with You

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

