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Should tinyML Processors be Multi-core?

Marian Verhelst (marian.verhelst@kuleuven.be)
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Making extreme edge (ExE) devices smart…
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ExE systems = wearables, implantables, smart speaker, drones, cars, …

www.tinyml.org
Embedded machine learning 

at the extreme edge

CLOUD 
GPU

Raw Data

Information

http://www.tinyml.org/


Are they?
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Only simple tasks KWS in phone 
speech processing in cloud

Limited processing or 
bulky battery

Processing limited by 
affordable cooling (10Watt)

Deep neural networks are everywhere in our edge devices… 



Are they?
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Deep neural networks are everywhere in our edge devices… 

6 full HD cameras @30fps
10Watt, ResNet-50/frame (under est.!)

è 1TOPs/frame, 300 TOPs 
è 30TOPs/Watt

Stereo HD + eye tracking camera @30fps
100mWatt, ResNet-50/frame (under est.!)

è 400GOPs/frame, 30 TOPs 
è 300TOPs/Watt



Neural network processors: state-of-the-art
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Diana
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The future?
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A typical Neural (co)processor unit (NPU)
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GeMM: all PE’s busy!



“Trick” 1: Reduced precision in ML processors
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“Trick” 1: Reduced precision in ML processors

Active field of research in algorithmic community
Promising results!
Hardware support needed
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Differential architecture search

Z. Cai, N. Vasconcelos. “Rethinking Differentiable Search for Mixed-Precision Neural Networks.” CVPR, 2020 2346-2355.



“Trick” 2: Data reuse in ML processors

Weight

Activations In

Activations Out

Main 
DRAM

Storage

On-chip SRAM / RF 
buffers (1 or more)

Datapath

Weights  

In Activations  

Out Activations  

Weight

Activations In

Activations Out

Off-chip
Storage

On-chip SRAM / RF 
(1 or more levels)

Datapath

Weights  

Layer inputs

Layer outputs

CHIP

Energy per IO 
transfer Energy per  memory read Energy per  

MUL + ADD
/write /N

Remember: every W 
& I used multiple 
times, and O 
accumulated!
Exploit data reuse to 
reduce memory 
energy

/N’

Peak performance: 
all data dimensions reused!



Data reuse in ML workloads
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Convolutions and GeMM allow significant data reuse:



Highest peak performance? “Trick” 1 & 2!
Analog In-memory Compute: data reuse and low precision!

Merge the memory and compute functions
 è bring compute to the data, instead of data to the compute!

Energy benefits from a.) data reuse; b.) low precision analog compute
“Analog In-memory compute” (AiMC) è <1fJ/op 
E.g. 512x512 size array

On-chip 
SRAM / RF

DatapathMemory + compute

512x512



Analog In-memory Compute: Under-utilization

But… utilization costs!
– Low data flow flexibility
– Only matrices with dimensions aligned with memory array efficiently used

E.g. 512x512 size array è waste of utilization / power / …

On-chip 
SRAM / RF

DatapathMemory + compute

C<512? K<512?

512x512



Efficiency for actual ML workloads
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In-memory compute enable to exploit low precision and massive parallelism
But…:

– But data reuse opportunities are layer dimension dependent
– What about non GeMM layers? DW layers? FC layers? …?



Neural network processors: state-of-the-art
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Neural network processors: state-of-the-art
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*

*

Reduce com
putational precision

Increase parallelism
!

Unrolling flexibility, utilization

Reduce com
putational precision

Increase parallelism
!

Unrolling flexibility, utilization

*

*

Peak performance != workload performance
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Need for heterogeneity

Pre-processing

Low channels 
convolutions

Subsampling
layers

Fully connected 
layers

Reduced weight
precision

§ Exploit D/AiMC high energy efficiency
§ For layers ok with lower precision
§ For layers with good parallelism for 

high utilization

§ BUT have alternative accelerator(s)   
for other layers!

 è Heterogeneous systems

Batch norm., 
activation func., ...



Flexibility AND efficiency? è Heterogeneous systems!
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Examples in the “edge”

Apple A16 Tesla FSDBut not low power…

2 high end CPU*

4 low-power CPU*

16 core NPU
15.8 trillions ops/sec

5 core GPU
Display engine

Wifi & 5G modems



Low power for the extreme edge (tinyML)?
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But lack of 
heterogeneity…

     (CPU heavy)
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Digital-analog accelerator co-design

CPU

§ Preprocessing
§ High-level 

controller

§ High bit precision
§ Fully connected layer
§ Small layers

§ Low bit precision
§ Massive parallel 

layers

Digital
AI core AiMC

Flexibility - Accuracy

Performance - Energy efficiency



DIANA SoC – High Level View

DIANA chip:
§ RISC-V CPU*

§ High-level control
§ External I/O

§ Digital AI core
§ 16x16 PEs

§ Analog AI core
§ AiMC for MVMs
§ SIMD for post process

§ Distributed memory 
hierarchy
*RISC-V CPU and periphery based on

PULPissimo platform, ETH

[Ueyoshi, Kodai, et al., “DIANA: An End-to-
End Energy-Efficient DIgital and ANAlog
Hybrid Neural Network SoC”, ISSCC2022]



Computation flexibility
§ 16x16 PE array

§ 2, 4 and 8-bit precision

Operation flexibility
§ Convolutional layers
§ Fully connected layers
§ Element-wise operations
§ Max pooling

Dataflow flexibility

Digital core – Extended flexibility

3 different levels of 
flexibility

[Ueyoshi, Kodai, et al., “DIANA: An End-to-
End Energy-Efficient DIgital and ANAlog
Hybrid Neural Network SoC”, ISSCC2022]



Analog core – Computing Units

Computation units:

§ AiMC array SRAM-based [6] 
for Matrix-Vector-Multiplications
§ 1152 7-bit input DACs
§ 512 6-bit output ADCs
§ 590k compute cells

(ternary weights)
Half a million MAC/cc!

§ SIMD for post-processing
§ 64 parallel computing units
§ 6 stages

[Ueyoshi, Kodai, et al., “DIANA: An End-to-
End Energy-Efficient DIgital and ANAlog
Hybrid Neural Network SoC”, ISSCC2022]



Analog core – Pipeline

Three processing stages:
1. MCU  à Input fetch stage
2. AiMC à Compute stage
3. SIMD à Post-processing stage

AiMC macro always in use
2
.

1
.

3
.



Measured results – Peak numbers
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Hybrid execution – Pipelining 

1.) Streaming operation
 è Efficient data sharing
2.) Scheduling of which layer on 

which core?
 è ZigZag!

Shared memory (L2)

CPU
Controller

Specific 
operations

Digital core
2.18 TOP/s/W
0.180 TOP/s

High precision
Flexible

Analog core
206 TOP/s/W
16.85 TOP/s

High parallelism
Limited flex.

DIANA SoC End-to-end mapping

@0.8V supplies

L1

Different accelerators optimized for 
different workloads to boost 
system level performance



Hybrid execution – Layer fusion

Pipelining only Pipelining + fusion

Analog coreDigital core

1

2

 3



Analog coreDigital core

Hybrid execution – Layer fusion

Pipelining only Pipelining + fusion
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§ Speeds up end-to-end execution
§ Reduces memory requirements

Layer  Tile size

§ But… scheduling degrees of freedom 
rise ENORMOUSLY…



Hybrid execution – Pipelining 

1.) Streaming operation
 è Efficient data sharing
2.) Scheduling of which layer tile on 
which core at what moment?
 è ZigZag!

Shared memory (L2)

CPU
Controller

Specific 
operations

Digital core
2.18 TOP/s/W
0.180 TOP/s

High precision
Flexible

Analog core
206 TOP/s/W
16.85 TOP/s

High parallelism
Limited flex.

DIANA SoC
End-to-end mapping

@0.8V supplies

L1
Different accelerators optimized 
for different workloads to boost 
system level performance



Optimizing DNN embedded processing stack with ZigZag
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ZI
G
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G Energy (MAC energy, memory load/store)

Latency (~array utilization, memory stalls)
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Technology 
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(cell size, read 
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NN workload
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Hardware architecture & 
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More details: [Mei, Tcomp2021]
https://github.com/KULeuven-

MICAS/zigzag 

https://github.com/KULeuven-MICAS/stream
https://github.com/KULeuven-MICAS/stream


Stream: ZigZag extension to layer fusion and multi-core
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[arXiv:2212.10612]



Power of ZigZag exploration: 
Scheduling optimization: latency or memory

Optimize unrolling, temporal schedule, tile size, (core allocation),…

43

[arXiv:2212.10612]



Scheduling optimization for Diana with Stream
[arXiv:2212.10612]



Optimizing DNN embedded processing stack with Stream
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More details: 
[arXiv:2212.10612]

https://github.com/KULeuven-
MICAS/stream 

https://github.com/KULeuven-MICAS/stream
https://github.com/KULeuven-MICAS/stream


Design space exploration

Huge design space!
- AI core sizes
- Memory volume
- Interconnect 

scheme
- …

No optimal design for 
all networks è 

heterogeneity helps! 

[arXiv:2212.10612]
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Carbon footprint
More and more accelerators on chip? No!

48 [Slide from Carole-Jean Wu, Meta]



Future?: More modular max-and-match with chiplets

Supporting 
more 
workloads
Rapid 
prototyping
Customization
Lower carbon 
footprint
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Conclusion

Specialization can bring significant efficiency gains
Yet loss of flexibility while thriving in terms of peak performance

è Heterogeneity to have efficiency/customizability across workloads
Towards heterogeneous, multi-core AI processing platforms
– Rapidly customizable to algorithmic workloads
– Supported by customizable multi-accelerator compilers
– Large challenges ahead! 
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