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Will we have reached the capacity of the human brain?

Energy efficiency of the human brain is estimated
to be 100,000x better than current hardware




Low-precision numerical formats
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» Low-precision formats provide benefits at every stage:
» Lower latency
» Lower power consumption
 Less die area for multipliers/accumulators



Which low-precision format?

INT8 and FP3
HW implications

Accuracy implications



INT8 and FP8 have the same number of values
but different distributions
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How do these formats compare?




HW considerations

Power, latency, area hard to measure directly

2-input gate count is a good proxy

Accumulator | Fixed-point FP16 FP32
Format accumulator accumulator accumulator
INT8 750
FP8-E4 1150 +53% 1200 2125 +183%

2-input gate counts of fixed-point and floating-point accumulator implementations

Accumulators for FP8 are less efficient than for INTS8




INT8 and FP8 accuracy

Uniform Normal Student-T distribution v = 3

* How well can INT8 and FP8 quantize probabilistic
distributions commonly found in NNs?

« We measure SNR as a result of quantization

 For uniform distributions: INT8 gives best SNR
« For distributions with outliers: FP8 gives best SNR

SNR

* FP8-E4 only best with large outliers




FP8 vs INT8 accuracy

ResNet18
ResNet50
MobileNetV2

« PTQ: Best format often FP8 with few exponent bits HRNet

DeeplLabV3

+ FP8 E4 only best for GLUE (due to large outliers) SalsaNext

BERT-base
Vil

« QAT: Gap closes, INT8 always best or competitive;

 FP8 E4 never the sole best Mobdanerv2

HRNet
DeeplLabV3
SalsaNext
BERT-base

More results in paper:

“FP8 versus INTS8 for efficient deep learning inference” (van Baalen, et al., 2023) arXiv:2303.17951
“FP8 Quantization: The Power of the Exponent” (Kuzmin, et al., NeurlPS 2022) arXiv:2208.08225



https://arxiv.org/abs/2303.17951
https://arxiv.org/abs/2208.09225

Some concluding remarks

FP8 less efficient in HW
PTQ performance is sometimes better in FP8
But no FP8 format consistently outperforms all others

« After QAT, INTS8 often gives better accuracy, and is always competitive

For on-device inference: INT8 provides most benefits




Challenges in using integer quantization

« Oscillations in quantization
* “Overcoming Oscillations in Quantization-Aware Training” (Nagel et al., ICML 2022)

« LLMs/Transformers: large outliers
* “Quantizable Transformers: Removing Outliers by Helping Attention Heads Do Nothing” (Bondarenko et al., 2023)



https://arxiv.org/abs/2203.11086
https://arxiv.org/abs/2306.12929
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Introduction to Quantization-Aware Training (QAT)

 Train with simulated quantization Output

» Quantizers discretize weights and activations

Quantizer

« Rounding operator is non-differentiable!

« Approximate gradient with straight-through e
estimator (STE)®!: ctivation

B Conv/FC

X_miné X_max Quantlzer

X_min

Simulated forward pass Simulated forward pass Input

for gradient computation

[4] Bengio et al., Estimating or propagating gradients through stochastic neurons for conditional computation. 2013.
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Oscillating weights in QAT

« Example regression problem:

* Latent weight: w

* Quantized weight: q(w) =s,, - round(w/s,,)

* Objective: min Lw) = (w, — q(w))?
* Rounding is approximated by STE!:

oL oL  (w,—wy,
ow dqw) (w.—w,

ifw>w
ifw<w

« Caused by STE
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Dampening Freezing
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Dampening takes a regularizing approach: Freezing the oscillating weights stabilizes training
the weights are forced closer to the bin center and mitigates the unwanted effects of oscillations

Oscillation dampening and iterative freezing fix the QAT issue

“Overcoming Oscillations in Quantization-Aware Training” (ICML 2022) 15



MobileNetV2 - comparison to literature

* We achieve SOTA for W4A4 and W3A3
* Dampening and freezing preform on par

* Freezing faster during training than

dampening ~30%

Method W/A | Val. Acc. (%)
Full-precision 32/32 71.7
LSQ* (Esser et al., 2020) | 44 | 69.5(-2.3)
PACT (Choi et al., 2018) 4/4 61.4 (-10.3)
DSQ (Gong et al., 2019) 4/4 64.8 (-6.9)
EWGS (J. Lee, 2021) 4/4 70.3 (-1.6)
LSO + BR (Han et al., 2021) | 4/4 70.4 (-1.4)
LSQ + Dampen (ours) 4/4 70.5 (-1.2)
LSQ + Freeze (ours) 4/4 70.6 (-1.1)
LSO* (Esseretal..2020) | 3/3 | 65.3(-6.5)
LSQ +BR (Hanetal.,2021) | 3/3 | 67.4(-4.4)
LSQ + Dampen (ours) 3/3 67.8 (-3.9)
LSQ + Freeze (ours) 3/3 67.6 (-4.1)

“Overcoming Oscillations in Quantization-Aware Training” (Nagel et al., ICML 2022)

arXiv:2203.11086

[9] Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., and Modha, D. S. Learned step size quantization. In International Conference on Learning Representations (ICLR), 2020


https://arxiv.org/abs/2203.11086
https://arxiv.org/abs/2203.11086
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Qutliers in Transformers

» Transformers tend to learn big outliers, which e QOutliers occur in the residual addition after the
makes them difficult to quantize to INTS. FFEN in transformer block:
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Why do outliers occur?

i * Hypothesis: transformer wants avoid update

A

* This requires 0Os in the attention

AW
e
Imj. » Which requires large values in the input to
m 1
& é & softmax
x N
eerem 2]
biggest .
outliers * Which means the FFN needs to produce very

large values

A

next

* However, the LayerNorm normalizes outliers

previous

i  Since Softmax doesn’t saturate, gradients will
always make values larger



Clipped Softmax

e Softmax:

» Clipped softmax:

oaip(z); = clip(a(z) - ({—y) +v,0,1)

+ renormalization

« Doesn’t require extreme inputs to saturate

Attention Gating

* Introduce gate for attention:

Gated_attention(x) :=
Q(x) K (x)" )
\% dhead V(X)

sigmoid (G(x)) ® softmax (

* G(x)is a small NN applied along token dim

20



Qutliers in Transformers

» Both approaches significantly dampen outliers and make 8-bit PTQ possible:

Model | Method FP16/32 || Max inf norm  Avg. kurtosis WEAS
BERT Vanilla 4.49+0.01 735+ 3076+262 1294+1046
(ppl.1) Clipped softmax | 4.39+0-00 21.5+15 80+6 4.52+0.01
' Gated attention 4.45+0.03 39.2+260 201+!8! 4.65+0.04
OPT Vanilla 15.84+0.05 340%47 1778+444 21.18+189
(ppl.L) Clipped softmax |16.29+%-07 63.2+88 19728+7480 || 37 20%24
' Gated attention  [15.55+0:05 8.7+0.6 18.9+09 16.02+0-07
VAT Vanilla 80.75+0-10 359+81 1018+471 69.24+6.93
(ace. 1) Clipped softmax |80.89+%13 73.7+149 22.9+16 79.77%0-2
‘ Gated attention  [81.01+9-06 79.8+0-5 19.9+03 79.82+0-11

» Paper under review; on arXiv

“Quantizable Transformers: Removing Outliers by Helping Attention Heads Do Nothing” (Bondarenko et al., 2023)

arXiv:2306.12929



https://arxiv.org/abs/2306.12929
https://arxiv.org/abs/2306.12929
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