
 
June 26 - 28, 2023



Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Advances in quantization for 
efficient on-device inference
Mart van Baalen, Staff Engineer/Manager
Qualcomm Technologies Netherlands B.V.



33

W
ei

gh
t p

ar
am

et
er

 c
ou

nt

1940 1950 1960 1970 1980 1990 2000 2010 2020 2030

1943: First NN (+/- N=10)

1988: NetTalk
(+/- N=20K)

2009: Hinton’s Deep 
Belief Net (+/- N=10M)

2013: Google/Y! 
(N=+/- 1B)

2025: 
N = 100T = 1014

2020: GPT3 (N = 175B)
1012

1010

108

106

1014

104

102

100

Deep neural networks
are growing fast

AI is being powered by the explosive
growth of deep neural networks

2023: GPT4 (N = 220B * 8)

Will we have reached the capacity of the human brain?
Energy efficiency of the human brain is estimated
to be 100,000x better than current hardware

2025

2017: Very large neural 
networks (N = 137B)



4

Low-precision numerical formats

• MatMul accelerator typical layout:

• Low-precision formats provide benefits at every stage:
• Lower latency

• Lower power consumption

• Less die area for multipliers/accumulators



5

Which low-precision format?

INT8 and FP8

HW implications

Accuracy implications



66

4S

2S 2

INT8 and FP8 have the same number of values
but different distributions

Formats

7S

6 1S

5 2S

4 3S

3 4S

2 5S

INT8

INT8

FP8 5/2

FP8 4/3

FP8 3/4

FP8 2/5

Formats most
commonly proposed

in the industry

Mantissa Exponent

How do these formats compare?



77

HW considerations

• Power, latency, area hard to measure directly

• 2-input gate count is a good proxy

Accumulators for FP8 are 53%-183% less efficient than for INT8

Accumulator
Format

Fixed-point 
accumulator

FP16 
accumulator

FP32 
accumulator

INT8 750 1450 2350

FP8-E4 1150 1200 2125
2-input gate counts of fixed-point and floating-point accumulator implementations

+53% +183%



8

INT8 and FP8 accuracy

• How well can INT8 and FP8 quantize probabilistic 
distributions commonly found in NNs?

• We measure SNR as a result of quantization

• For uniform distributions: INT8 gives best SNR

• For distributions with outliers: FP8 gives best SNR

• FP8-E4 only best with large outliers

SN
R



9

FP8 vs INT8 accuracy

• PTQ: Best format often FP8 with few exponent bits
• FP8 E4 only best for GLUE (due to large outliers)

• QAT: Gap closes, INT8 always best or competitive; 

• FP8 E4 never the sole best

More results in paper:

“FP8 versus INT8 for efficient deep learning inference” (van Baalen, et al., 2023) arXiv:2303.17951
“FP8 Quantization: The Power of the Exponent” (Kuzmin, et al., NeurIPS 2022) arXiv:2208.08225

https://arxiv.org/abs/2303.17951
https://arxiv.org/abs/2208.09225


1010

Some concluding remarks

• FP8 less efficient in HW

• PTQ performance is sometimes better in FP8

• But no FP8 format consistently outperforms all others

• After QAT, INT8 often gives better accuracy, and is always competitive

For on-device inference: INT8 provides most benefits



11

Challenges in using integer quantization

• Oscillations in quantization
• “Overcoming Oscillations in Quantization-Aware Training” (Nagel et al., ICML 2022)

• LLMs/Transformers: large outliers
• “Quantizable Transformers: Removing Outliers by Helping Attention Heads Do Nothing” (Bondarenko et al., 2023)

https://arxiv.org/abs/2203.11086
https://arxiv.org/abs/2306.12929


Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Overcoming Oscillations



13

• Train with simulated quantization 

• Quantizers discretize weights and activations

• Rounding operator is non-differentiable!

• Approximate gradient with straight-through 
estimator (STE)[4]:

Introduction to Quantization-Aware Training (QAT)

[4] Bengio et al., Estimating or propagating gradients through stochastic neurons for conditional computation. 2013.

Simulated forward pass Simulated forward pass 
for gradient computation

<latexit sha1_base64="/22x1iwGWT9uE8Oi8PZhFf5lZyw=">AAACGXicdVDLSsNAFJ34rPUVdelmsAiuSiK1j4VQcOOygn1AE8pkOmmHTjJhZiItIb/hxl9x40IRl7ryb5y0UVT0wMDhnPuYe7yIUaks691YWl5ZXVsvbBQ3t7Z3ds29/Y7kscCkjTnjouchSRgNSVtRxUgvEgQFHiNdb3KR+d0bIiTl4bWaRcQN0CikPsVIaWlgWo4vEE6cCAlFEUsc5jPORTJNHb2AsjT98uA0PYf2wCxZ5YZlN85qcEHqlZxUG9AuW3OUQI7WwHx1hhzHAQkVZkjKvm1Fyk2ymZiRtOjEkkQIT9CI9DUNUUCkm8wvS+GxVobQ50K/UMG5+r0jQYGUs8DTlQFSY/nby8S/vH6s/Lqb0DCKFQnxYpEfM6g4zGKCQyoIVmymCcKC6r9CPEY6KqXDLOoQPi+F/5POadmulitXlVKznsdRAIfgCJwAG9RAE1yCFmgDDG7BPXgET8ad8WA8Gy+L0iUj7zkAP2C8fQA3KqJH</latexit>

@bxe
@x

= 1

Output

Conv/FC

WeightsInput

Biases

Activation

Quantizer

Quantizer

+



14

Oscillating weights in QAT

• Example regression problem:

• Latent weight:  𝑤

• Quantized weight: 𝑞(𝑤) = s! ⋅ round 𝑤/𝑠!

• Objective:  min
!

ℒ 𝑤 = (𝑤∗ − 𝑞(𝑤))#	

• Rounding is approximated by STE[6]:

𝜕ℒ
𝜕𝑤 =

𝜕ℒ
𝜕𝑞(𝑤) = 5𝑤∗ − 𝑤↑, 	 if 𝑤 ≥ 9𝑤

𝑤∗ − 𝑤↓, if 𝑤 < 9𝑤

• Caused by STE

!𝑤

𝑤∗

𝑤↓

𝑤↑



1515“Overcoming Oscillations in Quantization-Aware Training” (ICML 2022)

Oscillation dampening and iterative freezing fix the QAT issue

Dampening takes a regularizing approach:
the weights are forced closer to the bin center

Freezing the oscillating weights stabilizes training
and mitigates the unwanted effects of oscillations

100

80

60

40

20

0
−0.4 −0.2 0.0 0.2 0.4

wint − w/s wint − w/s
−0.4 −0.2 0.0 0.2 0.4

400

300

200

100

0

Dampening Freezing

Frozen

Not frozen



16

MobileNetV2 – comparison to literature

• We achieve SOTA for W4A4 and W3A3

• Dampening and freezing preform on par

• Freezing faster during training than 
dampening ∼30%

MobiletNetV2

[9] Esser, S. K., McKinstry, J. L., Bablani, D., Appuswamy, R., and Modha, D. S. Learned step size quantization. In International Conference on Learning Representations (ICLR), 2020 

“Overcoming Oscillations in Quantization-Aware Training” (Nagel et al., ICML 2022)
arXiv:2203.11086

https://arxiv.org/abs/2203.11086
https://arxiv.org/abs/2203.11086


Snapdragon and Qualcomm branded products are products of Qualcomm Technologies, Inc. and/or its subsidiaries.

Outliers in Transformers



18

Outliers in Transformers

• Transformers tend to learn big outliers, which 
makes them difficult to quantize to INT8.

• Outliers occur in the residual addition after the 
FFN in transformer block:

Quant grid 
for sum:



19

Why do outliers occur?

• Hypothesis: transformer wants avoid update

• This requires 0s in the attention 

• Which requires large values in the input to 
softmax

• However, the LayerNorm normalizes outliers

• Which means the FFN needs to produce very 
large values

• Since Softmax doesn’t saturate, gradients will 
always make values larger

2. From the definition of the softmax function5, it is easy to see that this would require an input of
the softmax to have a relatively big dynamic range (Figure 4, 1 ). In fact, in the limit case where
softmax is exactly zero, this would require an infinite dynamic range:

softmax (x)i = 0 , 9j 6= i, xj � xi = +1 (2)

3. Since Layer Normalization ([1], 2 ) normalizes the outliers, the magnitude of the FFN output in
the previous layer ( 3 ) has to be very high to still produce a sufficiently big dynamic range after
the LayerNorm. Note, that this is also applicable for the transformer models with LayerNorm
applied prior to the self-attention or linear transformations instead, a variant adopted by GPT,
OPT, and many vision transformers [14, 34, 50, 51].

4. Finally, as softmax will never output exact zeros, it will always back-propagate a gradient signal
to grow bigger outliers6. The outliers will thus tend to become stronger in magnitude, the longer
the network is trained.

4 Method

Figure 4: A schematic illustration
of the attention layer in BERT. Hid-
den activation tensor is denoted
by x. � is an element-wise addi-
tion. A problematic output of the
feed-forward network that gener-
ates largest in magnitude outliers
is highlighted in red.

In this section, we introduce our proposed modifications for
the softmax attention mechanism. Based on our insights from
Section 3, the core idea of these modifications is to grant the
model the ability to produce very small the magnitude (or even
exact zeros) output of attention function, without producing
outliers.

Recall that the self-attention [53] is defined as follows:

Attention(x) := softmax

✓
Q(x)K(x)Tp

dhead

◆
V (x) (3)

where Q, K and V are learnable linear projections of the input
x. Most modern transformer models employ a multi-headed
variant of self-attention, where dmodel features are partitioned
into nheads groups of dhead features, and the final output is the
concatenation of the outputs of (3) applied to each group.

4.1 Clipped softmax

First, we propose to replace softmax function in (3) with the
following clipped softmax:

clipped_softmax(x; ⇣, �) :=

clip ((⇣ � �) · softmax(x) + �, 0, 1) . (4)

Here x is the input and ⇣ � 1, �  0 are the stretch factors
which are hyper-parameters of the method. This formulation
was proposed before in [36] in the context of binary stochastic
gates. We can view (4) as stretching the output of the softmax
from (0, 1) to (�, ⇣) and then clipping back to (0, 1) so that
we can represent exact zeros if � < 0 and exact ones if ⇣ > 1.
Specifically, the values of the softmax larger than 1��

⇣�� are
rounded to one whereas values smaller than ��

⇣�� are rounded
to zero.

With this drop-in replacement, we can achieve exact zeros (and ones) with a finite range for the
softmax input. In addition to that, whenever values are clipped they will not give a gradient, preventing
the outliers to grow further.

5softmax (x)i = exi/Pd
j=1 e

xj

6Let y = softmax (x). If yi > 0, then @yi
@xj

6= 0 8j

5



20

Clipped Softmax Attention Gating

• Softmax:

𝜎 𝑧 ! =
𝑒"$

∑#$%& 𝑒"%

• Clipped softmax:

𝜎'(!) 𝑧 ! = 𝑐𝑙𝑖𝑝(𝜎 𝑧! ⋅ 𝜁 − 𝛾 + 𝛾, 0, 1)

+ renormalization

• Doesn’t require extreme inputs to saturate

• Introduce gate for attention:

• 𝑮(𝒙) is a small NN applied along token dim 



21

Model Method FP16/32 Max inf norm Avg. kurtosis W8A8

BERT
(ppl.#)

Vanilla 4.49±0.01 735±55 3076±262 1294±1046

Clipped softmax 4.39±0.00 21.5±1.5 80±6 4.52±0.01

Gated attention 4.45±0.03 39.2±26.0 201±181 4.65±0.04

OPT
(ppl.#)

Vanilla 15.84±0.05 340±47 1778±444 21.18±1.89

Clipped softmax 16.29±0.07 63.2±8.8 19728±7480 37.20±2.4

Gated attention 15.55±0.05 8.7±0.6 18.9±0.9 16.02±0.07

ViT
(acc.")

Vanilla 80.75±0.10 359±81 1018±471 69.24±6.93

Clipped softmax 80.89±0.13 73.7±14.9 22.9±1.6 79.77±0.25

Gated attention 81.01±0.06 79.8±0.5 19.9±0.3 79.82±0.11

Table 2: A summary of results for our proposed methods applied on BERT, OPT, and ViT.

5.4 Main results

We summarize our main set of results in Table 2. As we can see, in almost all cases, both of our
proposed techniques dampen the outliers’ magnitude to a great extent, reduce the kurtosis, and yield
models with significantly higher quantized performance, which is close to the original FP16/32
performance. In addition to that, for each model, at least one of our methods also improves the
floating-point task performance. We hypothesize this is because the network is helped with learning
the “no-op” updates more easily. However, we are cautious about the improved performance as this
is not consistent across all hyper-parameters and it is unclear if it generalizes to more architectures
and larger models.

The only case where our method failed to perform well was the clipped softmax applied to OPT. At
the moment, we do not have an explanation of why this is the case and leave it for future work. We
list selected hyper-parameters and show extended results in Appendix B.

6 Discussion

“No-op” behavior It is interesting to note that the identified “no-op” behavior is likely not limited
to transformers and convolutional architectures likely learn something similar. We also see that
despite the network trying to learn a full “no-op”, still a small amount of noise is added to each
residual, which may constitute a form of network regularization. Investigating this further might give
us a clue as to why neural networks generalize despite being significantly overparametrized if many
parameters are rendered unused by not updating the representation in later layers [64].

Limitations We have not studied the effect of our method on very-large scale transformers, as it
would require training very expensive models from scratch. Given the fundamental understanding
of the issue underlying our solutions, we expect the same effect on large-scale models. We show a
very small improvement in FP16/FP32 performance due to our methods, but we do not deem our
results exhaustive enough to claim that this will hold in general. Lastly, our methods do have a
hyperparameter each, although we show that both methods are relatively robust to its hyperparameter,
having one is never optimal.

Impact As our methods help transformers to be more efficient, we expect only positive outcomes
of our work. Making neural networks more efficient will help with their high power consumption at
inference. It further helps to move inference from the cloud to edge devices which can overcome
potential privacy concerns. We cannot fathom any negative impact from our work that is not severely
construed.

7 Conclusions

We have thoroughly analyzed the activation outlier problem that makes transformers difficult to
quantize. We showed that transformer networks try to learn not to update residuals and that by doing

9

Outliers in Transformers

• Both approaches significantly dampen outliers and make 8-bit PTQ possible:

• Paper under review; on arXiv

“Quantizable Transformers: Removing Outliers by Helping Attention Heads Do Nothing” (Bondarenko et al., 2023)
arXiv:2306.12929

https://arxiv.org/abs/2306.12929
https://arxiv.org/abs/2306.12929


22

INT8 is great

Pushing to lower 
bitwidths still poses 
new and exciting 
challenges

22



Follow us on:

For more information, visit us at:

qualcomm.com & qualcomm.com/blog

Thank you
Nothing in these materials is an offer to sell any of the components
or devices referenced herein.

©2018-2023 Qualcomm Technologies, Inc. and/or its affiliated
companies. All Rights Reserved.

Qualcomm is a trademark or registered trademark of Qualcomm
Incorporated. Other products and brand names may be trademarks
or registered trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm Incorporated,
Qualcomm Technologies, Inc., and/or other subsidiaries or business units within
the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes 
our licensing business, QTL, and the vast majority of our patent portfolio. Qualcomm 
Technologies, Inc., a subsidiary of Qualcomm Incorporated, operates, along with its 
subsidiaries, substantially all of our engineering, research and development 
functions, and substantially all of our products and services businesses, including 
our QCT semiconductor business. 

Snapdragon and Qualcomm branded products are products of Qualcomm 
Technologies, Inc. and/or its subsidiaries. Qualcomm patented technologies are 
licensed by Qualcomm Incorporated. 



Copyright Notice
This presentation in this publication was presented as a tinyML® EMEA Innovation Forum. The content 
reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this 
publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the 
authors and their respective companies and may contain copyrighted material. As such, it is strongly 
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding 
the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org


