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What’s all this neuromorphic stuff, anyway?

§ Neurons are living cells first and only then computational units
§ In the end, the only thing that counts are the computational properties of the units we employ 

and how easy we can build & organize them in networks
§ What if... we reverse the question:

Known electronic 
building block

Model:
Hodgkin-Huxley, 

Fitzhugh-Nagumo, 
Leaky I&F,...

Neuron-like 
computational 

properties?

From: how to implement neurons (+ synapses) in electronics?

To: which known electronic building blocks can be useful as artificial “neuron”?

Energy/inference ¯ Þ applications, market opportunities 
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Non-retriggerable* monostable multivibrator

§ Two possible states: idle, triggered
§ Two inputs: EXCitatory and INHibitory
§ If idle and EXC spike in à triggered
§ *If triggered and EXC in à ignore
§ After T: Spike and return to idle
§ If triggered and INH spike in 

à return to idle, don’t spike
§ OR signals together

à overlapping input spikes? Don’t care!
§ “Non-biologically inspired spiking neuron”
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It’s just a timer!



Motivation: MMV = just a counter in digital hardware

5

How to put MMVs to good use in event-driven 
networks to actually solve problems?

Earlier work:
§ Dynamical behavior of MMV networks: 

rate equations, equilibria of recurrent networks... 
§ Rate-based backpropagation
§ Many fun problems for mathematicians & physicists J

“Monostable multivibrators as novel artificial 
neurons”, Neural Networks, 2018.

§ #MMVs  ≈ #Flipflops/log2(Tmax)
§ Artix XC7A100T FPGA (ARTY-board)  à  ~10k
§ ~100s of MMVs in a recurrent network:



Example: a spike-interval discriminator
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No spike out

Spike out

§ Spike out if input spike interval between Tmin, Tmax
§ Conditions: d>Tmax – Tmin, Tmin>Tmax/2
§ But...how to train large event-driven networks? 

IN

IN

States: 



Goal: Optimized Recurrent MMV Networks

§ OR-ing type crossbar
§ No synaptic addition in the network
§ Overlapping spikes? We don’t care!
§ How to find connections and T’s?
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Training method overview

MMV model:
§ Backpropagation with surrogate gradients

 à “get over” step-function discontinuity
§ Spike, EXC, INH = 3 separate step-functions needed
§ Use multiplicative integration rather than additive 

timing process 
à  retain insensitivity to long T

Network:
§ Separate EXC/INH inputs and handle as events via 

surrogate gradients
à handle overlaps/OR-ed signals

§ Slow binarization of connections & rounding of 
periods over many epochs
à force connections {0,1} vs. real-valued weights 
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Surrogate gradient Multiplicative timekeeping

Slow binarization Slow period rounding

ALL elements are needed for the training to work!



TRICK #1:  the NRMMV model 
Trigger, Reset, Spike = 3 discontinuous events

Surrogate gradient

Activation function:

True adder needed!
NRMMV:
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Separate EXC/INH inputs

Multiplying accumulator

EXC and INH are separate EVENTS

Processing order 
determines “corner cases”

Leaky Integrate&Fire:



TRICK #1½ :  multiplicative vs additive accumulation*
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Preserve gradient sensitivity to input spikes in the past

From PyTorch Autogradient

*This is only for the model 
 Unrelated to the hardware implementation!



TRICK #2:  network model
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An MMV cannot distinguish between 1,2 or more simultaneous EXC/INH inputs!
There is NO addition of synaptic inputs

Hence NO adders are needed in the network!
Synapses are simple OR-operations

start with 
random real-valued 

weight matrices

Split EXC (>0) and
INH (<0) weights

Process separately,
 inputs are positive,

Equivalent to 
#activated lines

Split synaptic activation in EXC, INH and process separately 
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TRICK #3:  slow weight binarization & period rounding
§ Slowly “crystalize” the weights over many epochs, γ: 1à0, to connections
§ Forward step: use partially quantized weights and rounded periods
§ Backward and update step: operate on full precision C



MNIST handwritten digits

§ Threshold pixels at 0.5
§ Stream in row or column-wise
§ 500 NRMMVs
§ Count spikes
§ Linear readout: ~98.6%
§ Population count readout: ~97.3%   
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MNIST digits - some network metrics
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Spike pattern

Period distribution

Network connections

Input connections

Spikes/inference distribution



MNIST handwritten digits

§ Streaming in rows & columns
§ 2 x 500 NRMMVs + linear readout 1000 à10 
§ Data augment train set every epoch: shift ±2, rotate ±15° à ~99% 
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Yin-Yang segmentation task

§ Recurrent NRMMV net + linear readout layer
§ Direct binary encoding [0,1] à 0..212 -1 (12 bits)
§ 82 ± 24 spikes, active connections: ~26%
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A nicer “XOR”

x=0.54603    y=0.17314

Network size Accuracy 
[%]

100 96.26

200 98.43

500 99.16



Google Soli radar gestures
§ Input: 32´32 Range-Doppler maps [0..1], 25ms/map,11 gestures
§ Preprocessing:

• limit input image to first 384 pixels
• #timesteps (frames) rescaled from 28...145 à 50
• Any value>0 à spike in

17Wang et al., Proc. UIST 2016.

Input: 50 timesteps x 384 pixels

Pinch Pinky

https://github.com/simonwsw/deep-soli


Google Soli radar gestures

§ Stream in recurrent NRMMV net + linear readout
§ 10´ cross validated
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Reference Network/Algorithm Accuracy 
[%]

This work 100 MMVs + linear readout 97.62 ± 0.33

This work 250 MMVs + linear readout 98.01 ± 0.26

This work 500 MMVs + linear readout 98.32 ± 0.29

Yin et al., Nat. 
Mach. Intell 2021

Spiking RNN 91.9

Tsang et al., MDPI 
Electronics 2021

LSM with 460 neurons 98.6 ± 0.7

Wang et al., UIST 
2016 

CNN+RNN 87.17



IBM DVS128 gestures

§ Group events in frames of 50ms
§ pol=1 à pixel++, pol=0 à pixel--, clamp at 0, threshold to spikes
§ 2.0s/gesture, 40 frames, 0.25s hop, 32x32 pixels à flatten to 1024 wide x 40 

timesteps
§ 22347 train, 5870 test gestures

https://research.ibm.com/interactive/dvsgesture/
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IBM DVS128 gestures

§ 500 NRMMVs + linear readout
§ Data augmentation: shift ±3 pixels, rotate ±15°
§ 22347 train, 5870 test gestures
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Reference Network/Algorithm Accuracy 
[%]

This work 500 MMVs + linear readout 92.91

Safa et al., 2022 
arXiv.2111.00791

LIF+STDP 92.5 

Amir et al., IEEE 
CVPR 2017

CNN 91.77

Amir et al., IEEE 
CVPR 2017

CNN+postprocessing 94.59

Samadzadeh et al., 
2021 
arXiv.2003.12346

Spiking ResNet 96.7

https://doi.org/10.48550/arXiv.2111.00791
https://doi.org/10.48550/arXiv.2003.12346


MNIST digits - energy/inference
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§ PyTorch à Verilog
§ Mapping to TSMC 28nm HPC+, 500 MMV recurrent reconfigurable network with D-FF & OR-

ing trees: 855pJ/inf.
§ Linear/population count readout guesstimate using figures from another project: 

2.8pJ/MAC, 1.4pJ/ADD, BF16 format, 100MHz

Reference Method/Conditions Accuracy 
[%]

Time per inference Energy per inference

This work 500 MMVs à linear readout, 28nm 
TSMC HPC+

98.61 330ns+treadout=330ns+(500x10+
10)x10ns=50.43µs

855pJ+Ereadout=
855pJ+10x(500x2.8pJ+1.4pJ)=

14.9nJ
This work 500 MMVs à population coding 

readout, 28nm TSMC HPC+
97.32 330ns+treadout= 

330ns+500x10ns=
5.33µs

855pJ+Ereadout=
855pJ+500x1.4pJ=

1.56nJ
Frenkel et al., ISCAS 
2020

SPOON, 28 nm event-driven CNN 97.5 117µs 313nJ

Park et al., ISCC 2019 200+200+10 SNN, 28 nm 97.83 10µs 236.5nJ

Chen et al., IEEE Symp. 
VLSI 2018

4096-neuron, 1M synapse SNN, 10 
nm

97.9 not given 1.7µJ

Stuyt et al., Front. 
Neurosci 2021

“µBrain”, 256+64+16 SNN, 40 nm 91.7 4.2ms 308nJ



Take Home Messages
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q MMVs = non-biologically inspired spiking  “neurons” = simple timers

q MMV networks can be trained with PyTorch and implemented in digital 
hardware
They work by setting up and testing timing conditions

q Extremely low energy/inference due OR-ing style interconnect instead of 
synaptic addition, at good accuracy, with current technology

q Many things still to be discovered: other types of MMVs, heterogenous 
MMV nets, MMV based CNNs, evolutionary optimization...



Preprint on ResearchGate
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http://dx.doi.org/10.13140/RG.2.2.27417.70242
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Thanks!
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