TensorFlow for Microcontrollers
Pete Warden

Engineer, TensorFlow
What are we building?
Demo
Goals: Tiny

- Framework that fits in 5KB of RAM, 20KB of Flash
- Speech demo with 30KB of RAM, 40KB of Flash
Goals: Compatible

- Uses TensorFlow Lite APIs and file format
- Most code shared with TF Lite
- There’s a well-supported path to getting TensorFlow models running
Goals: Extensible

- AKA hackable!
- Works with Keil, Mbed, other IDEs
- Only a small working set of files is needed
- Simple to write specialized versions of ops
- Full set of reference code and tests
Goals: Extensible

- We’re experts on deploying ML, not MCUs
- We need you!
- We aim to make collaboration as simple as possible
- We will deliver ML examples and benchmarks
Example of Extensibility

Depthwise Conv was too slow!
Start by copying micro/kernels/depthwise_conv.cc to micro/kernels/portable_optimized/depthwise_conv.cc

int32 acc = 0;
for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
 for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
 const int in_x =
 in_x_origin + dilation_width_factor * filter_x;
 const int in_y =
 in_y_origin + dilation_height_factor * filter_y;
 // If the location is outside the bounds of the input image,
 // use zero as a default value.
 if ((in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
 (in_y < input_height)) {
 int32 input_val =
 input_data[Offset(input_shape, b, in_y, in_x, ic)];
 int32 filter_val = filter_data[Offset(
 filter_shape, 0, filter_y, filter_x, oc)];
 acc += (filter_val + filter_offset) *
 (input_val + input_offset);
 }
 }
}
Specialized implementation of the depthwise convolution operation designed to work with the particular filter width of eight used by the default micro speech sample code. It uses 1KB of RAM to hold reordered weight parameters, converted from TFLite's NHWC format to NCHW format, and expressed as signed eight bit integers, rather than unsigned. Care must be taken when calling this not to use it for more than one node since there's only a single static buffer holding the weights. You should use this implementation if depthwise convolutions are a performance bottleneck, you have a layer that meets the parameter requirements, and the extra RAM usage and additional code size are not an issue.

```c
static inline void DepthwiseConvOptimizedForFilterWidthEight(
    TfLiteContext* context, const DepthwiseParams& params,
    const RuntimeShape& input_shape, const uint8* input_data,
    const RuntimeShape& filter_shape, const uint8* filter_data,
    const RuntimeShape& bias_shape, const int32* bias_data,
    const RuntimeShape& output_shape, uint8* output_data) {
```
// If this is the first time through, repack the weights into a cached buffer
// so that they can be accessed sequentially.
static bool is_reshaped_filter_initialized = false;
if (!is_reshaped_filter_initialized) {
 for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
 for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
 for (int oc = 0; oc < output_depth; ++oc) {
 const uint8* current_filter =
 filter_data + Offset(filter_shape, 0, filter_y, filter_x, oc);
 int8* reshaped_filter =
 reshaped_filter_data +
 Offset(reshaped_filter_shape, 0, oc, filter_y, filter_x);
 *reshaped_filter = (int32_t)(*current_filter) + filter_offset;
 }
 }
 }
 is_reshaped_filter_initialized = true;
}
...
if ((filter_width == 8) && !is_out_of_x_bounds) {
 int8* current_filter =
 reshaped_filter_data + Offset(reshaped_filter_shape, 0, oc,
 filter_y, filter_x_start);
 const uint32_t input_vals0 =
 reinterpret_cast<const uint32_t>(current_input);
 current_input += 4;
 const int32_t filter_vals0 =
 reinterpret_cast<const int32_t>(current_filter);
 current_filter += 4;
 const uint8 input_val0 = input_vals0 & 0xff;
 const int8 filter_val0 = filter_vals0 & 0xff;
 acc += filter_val0 * input_val0;
 const uint8 input_val1 = (input_vals0 >> 8) & 0xff;
 const int8 filter_val1 = (filter_vals0 >> 8) & 0xff;
 acc += filter_val1 * input_val1;
 const uint8 input_val2 = (input_vals0 >> 16) & 0xff;
 const int8 filter_val2 = (filter_vals0 >> 16) & 0xff;
 acc += filter_val2 * input_val2;
 const uint8 input_val3 = (input_vals0 >> 24) & 0xff;
 const int8 filter_val3 = (filter_vals0 >> 24) & 0xff;
 acc += filter_val3 * input_val3;
} else {
 const uint8* current_filter = filter_data +
 Offset(filter_shape, 0, filter_y, filter_x_start, oc);
 for (int filter_x = filter_x_start; filter_x < filter_x_end;
 ++filter_x) {
 int32 input_val = *current_input;
 current_input += input_depth;
 int32 filter_val = *current_filter;
 current_filter += output_depth;
 acc +=
 (filter_val + filter_offset) * (input_val + input_offset);
 }
}
Future?

Depthwise Conv was too slow!

Start by copying micro/kernels/depthwise_conv.cc to micro/kernels/portable_optimized/depthwise_conv.cc

Future - Visual Wake Words

Aakanksha Chowdhery
ML Engineer
Future - Visual Wake Words

Popular use-case: classify person/not-person

Initially presence classification

Eventually extend to object counting/localization
Future - Visual Wake Words

Popular use-case: classify person/not-person

ImageNet dataset: classifies 1000 classes

CIFAR10: very low-resolution images

Need ImageNet for microcontrollers!
Future - Visual Wake Words

Open data set based on MS COCO
Labeled images with >5% person
Future - Visual Wake Words

Need models that fit 250 KB SRAM
Compressed MobileNet architectures to <250KB
Initially presence classification >90% accuracy
Future - Visual Wake Words

Dataset release and challenge details coming up soon!
More details at the poster session!
Get it. Try it.

Docs: tensorflow.org/lite/guide/microcontroller

Example: g.co/codelabs/sparkfunTF