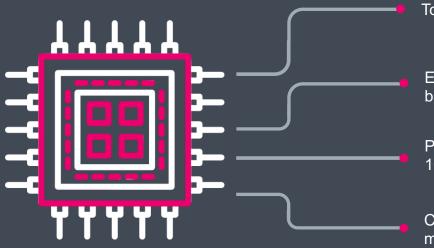
tinyML. Summit

Miniature dreams can come true...

March 28-30, 2022 | San Francisco Bay Area

NEUTON.AI

A Novel Approach to Building Exceptionally Tiny Models without Loss of Accuracy


Tiny ML Defined – 2019

Pete Warden Google

Total memory - often < 100 kB

Energy - µW scale, battery to last for years

Processor – 10s - 100s MHz, at most

Cost - very low cost to enable massive deployment

TinyML projects – What do we see today

Projects — "TinyML" (218 results)

TinyML Dog Bark Stopper

Nathaniel Felleke

A fun and simple project that uses **TinyML** to dete 6,073 Views 17 Respects

TinyML: Live Image Classification on ESP32-CAN Alan Wang

A modified example that can display the captured goodbye to clumsy WiFi connections!

1.185 Views 6 Respects

TinyML in MicroCosmos Sai Charan Koyuru, Sri Sai Tarun

This project is a proof of concept to test the feasily microorganisms

1.087 Views 6 Respects

(limit 3)

MJRoBot (Marcelo Rovai)

Seeed Wio Terminal programed using Codecraft/Edge Impulse is a fan **tinyML** (Embedded Machine Learning).

610 Views 1 Respect

TinyML Made Easy: Exploring Regression - White Wine Quality

MJRoBot (Marcelo Rovai)

Regression can be hand when classification goes with a high number

There are 218 'TinyML' projects on hackster.io

In 96% of cases are used HW with a total memory of more than 100 KB

Where are you in TinyML journey?

1 MB

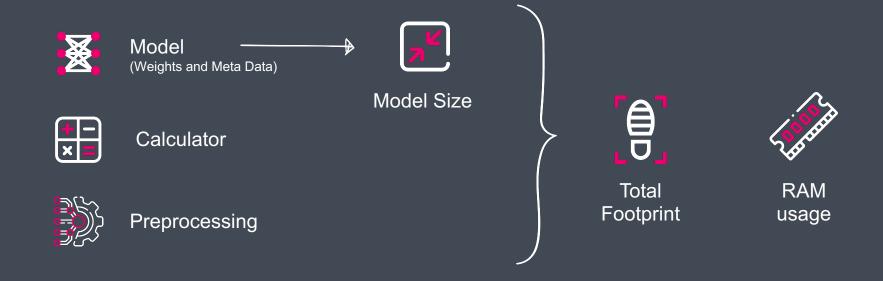
100 KB

30 KB

10 KB

Total HW memory

96% of todays cases


4% really TinyML cases

New opportunities!

Moving TinyML Forward!

Embedded model consideration

Moving TinyML Forward!

10 kB

Total memory for HW

< 5 kB

The Ideal Weight for Total Footprint

KB

The Ideal Weight for a TinyML Models

One is not enough!

BEST METRIC

There are many Neural Architecture Search methods, Auto ML tools and Frameworks (TensorFlow, Keras and PyTorch).

However, most of them are focused on finding the **best metric**.

MINIMAL SIZE

There are many technics reducing size of a model: quantization, pruning, nor distillation. All of them effect to the accuracy.

BEST METRIC + MINIMAL SIZE

While TinyML tasks require building models with **best** metric and minimal size

Taking the next step!

Neuton – The First Neural Network Framework that empowers you to build models with minimal size and without loss of accuracy

automatically

in one iteration

without compression

No Model Size & Quality Trade Off

Neuton's models are extremely compact:

up to
1000
times

- Fewer coefficients and neurons
- Smaller in size (Kb)
- Faster inference

in comparison to TensorFlow and other algorithms

- No compression techniques (quantization, pruning, etc.)
- Accuracy is not affected

Small scale – huge opportunities!

If your model is 1 KB your 8, 16, 32, 64 bit HW can:

Have many models in one MCU

Embed model into really tiny pieces of HW:

- sensors
- 8, 16 bit MCUs
- ASICs

Spend less energy on calculation

Have more business logic in one MCU

Bring Intelligence to the tiniest MCUs Even 8-bit MCU can now be Al Driven

Bit depth	Neuton	TensorFlow			
8-bit	✓	×			
16-bit	✓	×			
32-bit	✓	✓			

Neuton vs. TensorFlow Lite Benchmarks

		NEUTON (8 bit)				TENSORFLOW LITE (Quantized)				
DATASET	METRIC	METRIC VALUE	MODEL SIZE, KB Metadata + Weights in Flash Memory	TOTAL FOOTPRINT, KB Model Size+ Calculator + Preprocessing in Flash Memory	RAM USAGE, KB Preprocessing + Calculator	METRIC VALUE	MODEL SIZE, KB Model in Flash Memory	TOTAL FOOTPRINT, KB Model Size + Interpreter + Preprocessing in Flash Memory	RAM USAGE, KB Preprocessing + Interpreter	NEUTON'S MODEL IS IN X TIMES SMALLER
Abnormal Heartbeat Detection	AUC	0,98	2,56	3,73	0,8	0,97	14,22	166,19	6,7	5,6
Hole Drilling Deviation Prediction	Accuracy	0,98	0,21	1,38	0,06	0,96	18,5	170,47	7,42	88,1
Air Pressure System Failures	Accuracy	0,99	1,6	2,77	0,7	0,97	10,66	162,63	6,88	6,7
Detection of storage condition violations	AUC	0,95	0,13	2,17	0,03	0,93	4,9	156,88	6,88	37,7
IoT based Gesture Recognition	Accuracy	0,99	5,03	15,2	5,4	0,97	97,06	249,04	11,33	19,3
Food Quality Monitoring	Accuracy	0,99	0,1	1,27	0,04	0,98	3,47	155,44	6,37	34,7
Air Quality Prediction	MAE	0,21	0,16	1,2	0,05	0,22	7,14	159,11	6,83	44,6
Energy Output Definition	MAE	3,23	0,33	1,37	0,04	3,35	4,88	156,91	6,58	14,8
Electric Grid Prediction	Accuracy	0,93	0,66	1,84	0,09	0,93	3,72	155,69	6,51	5,6
Room Occupancy Detection	Accuracy	0,98	0,18	1,36	0,04	0,97	10,72	162,69	6,73	59,6
MNIST	Accuracy	0,94	13,33	14,51	3,38	0,91	17,39	169,36	9,87	1,3
Gearbox Fault Diagnosis	Accuracy	0,92	1,93	12,52	2,52	0,91	30,75	186,19	9,23	15,9
Air Writing Digits Recognition	Accuracy	0,94	0,86	11,45	2,55	0,93	24,6	179,96	9,13	28,6
"Flex" or "Punch" Recognition	Accuracy	0,97	0,65	7,18	3,07	0,96	4,13	159,76	9,48	6,4
Snowfall prediction	Accuracy	0,88	0,34	1,52	0,05	0,87	2,27	154,23	6,01	6,7

All benchmarks were made on 32-bit MCU (Nordic nRF52840) as TensorFlow Lite for Microcontrollers requires a 32-bit platform. 8-bit post-training quantization was implemented for TF models. Neuton models do not require any compression techniques.

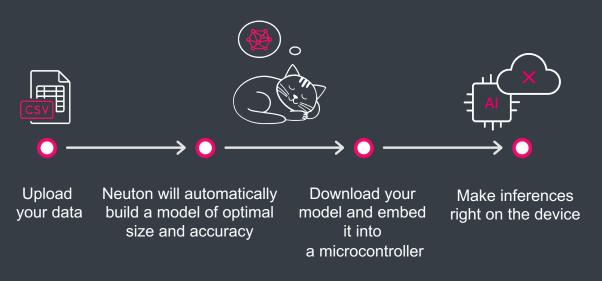
How Do We Create Compact Models without Comprising Accuracy?

Selective approach to the connected features

Automatic neuron-by-neuron network structure growth

No manual search for neural network parameters

Unique patented global optimization algorithm



Permanent cross-validation

Neuton as an AutoML

Automatically build extremely tiny models and embed them into any microcontroller

- No-Code SaaS Solution
- No Data Science experience required
- Fully automated pipeline

Bring Intelligence to the sensor edge

The STM LSM6DSO16IS it supported real-time applications that rely on sensor data.

ISPU (intelligent sensor processing unit) RAM: 32 kb - of program 8 kb - for data

'Flex' or 'punch' movement recognition based on an accelerometer.

Model Size – 0,65 kB Total footprint 7,18 kB RAM usage - 3,07 kB Accuracy – 97%

UNIQUE NEURON NETWORK FRAMEWORK

Build extremely small models without loss of accuracy in one iteration

No manual search for network parameters

Automatic neuron-by-neuron network structure growth

Up to 1000 times smaller in comparison to TensorFlow

NEUTON'S MODELS

Can run even on 8 bit microcontrollers

No compression techniques (quantization, pruning, etc.). Accuracy is not compromized over small size.

AUTO ML PLATFORM No Data Science experience required

SaaS Solution

No-Code

Free unlimited plan for developers

Thank you!

tinyML Summit 2022 Sponsors

Copyright Notice

This presentation in this publication was presented as a tinyML® Summit 2022. The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org