tinyML. Summit

Miniature dreams can come true...

MARCH 28-30, 2022 | SAN FRANCISCO BAY AREA

REAL-TIME DEEP SPEECH ENHANCEMENT SYSTEM FOR EMBEDDED VOICE UI

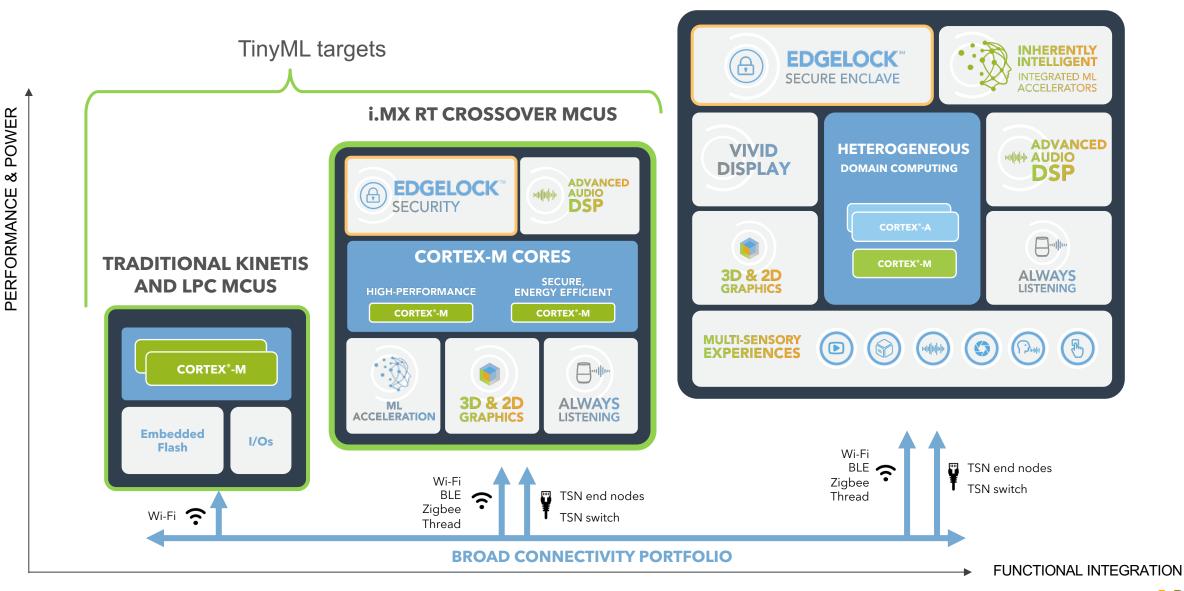
TESS BOIVIN
ML ENGINEER

Aurelie Donjon, Guido Roncarolo, Voice and Audio team

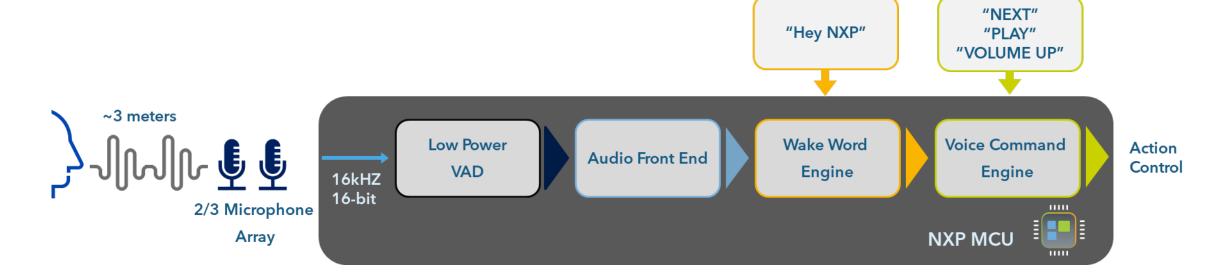
SECURE CONNECTIONS FOR A SMARTER WORLD

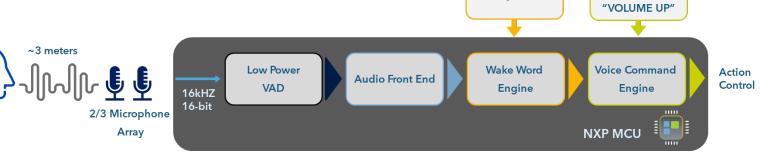
SCALABLE COMPUTE PLATFORMS

i.MX AND LAYERSCAPE APPLICATIONS PROCESSORS



Wake up your device and control action using your voice



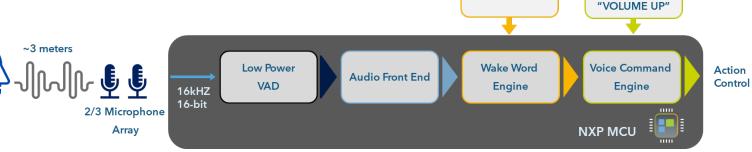


Voice UI constrained by low power
 Voice UI runs on NXP i.MX RT1060

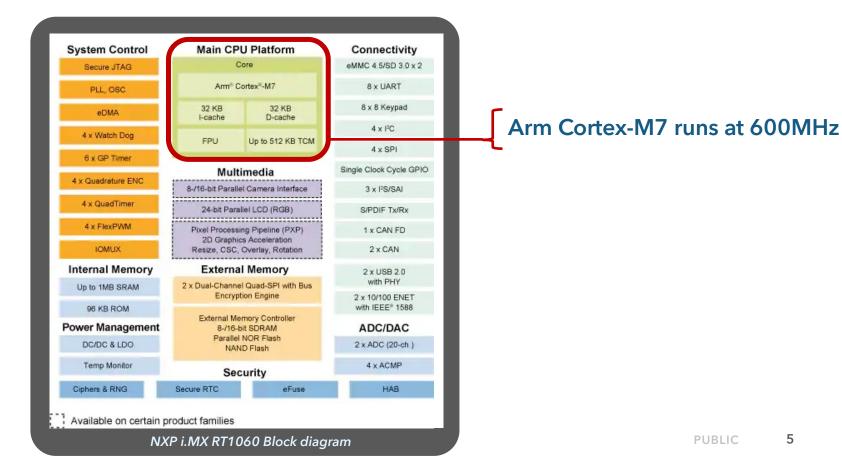
"NEXT"

"PLAY"

"Hey NXP"



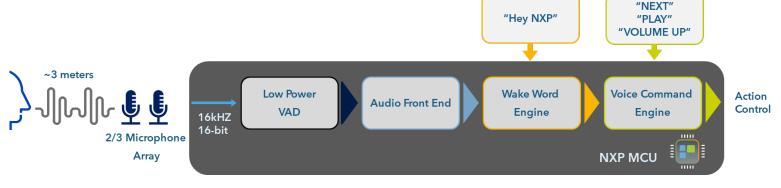
 Voice UI constrained by low power Voice UI runs on NXP i.MX RT1060



"NEXT"

"PLAY"

"Hey NXP"



- Voice UI constrained by low power
 Voice UI runs on NXP i.MX RT1060
- Low latency UI
 Trigger delay < 200ms to fit market requirements

• High performance requirements

False Positives (FP) on the market are $\leq 3 / 24h$

- Voice UI constrained by low power
 Voice UI runs on NXP i.MX RT1060
- Low latency UI
 Trigger delay < 200ms to fit market requirements

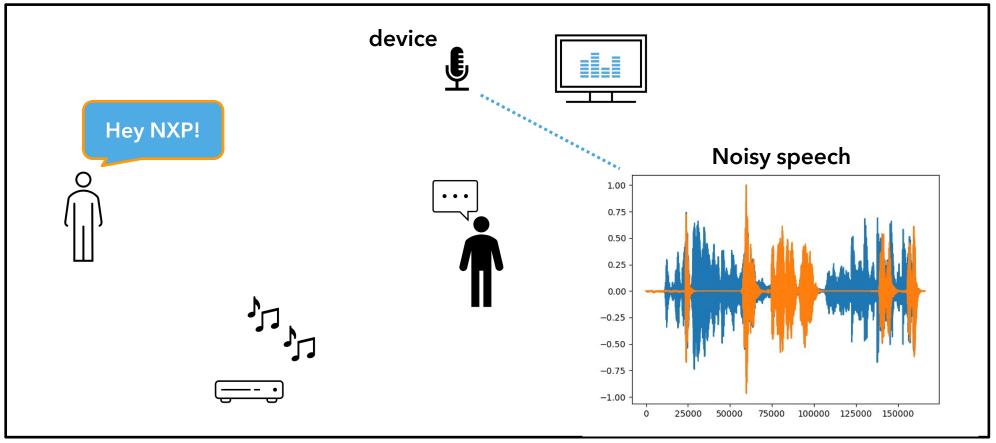
High performance requirements
 False Positives (FP) on the market are ≤3 / 24h

$$FP = 3 * \frac{10ms}{24h * 60 \min * 60s}$$
 $FPrate = 34.10^{-6}\%$
 $TNrate = 99.99996\%$

Very high requirements!!

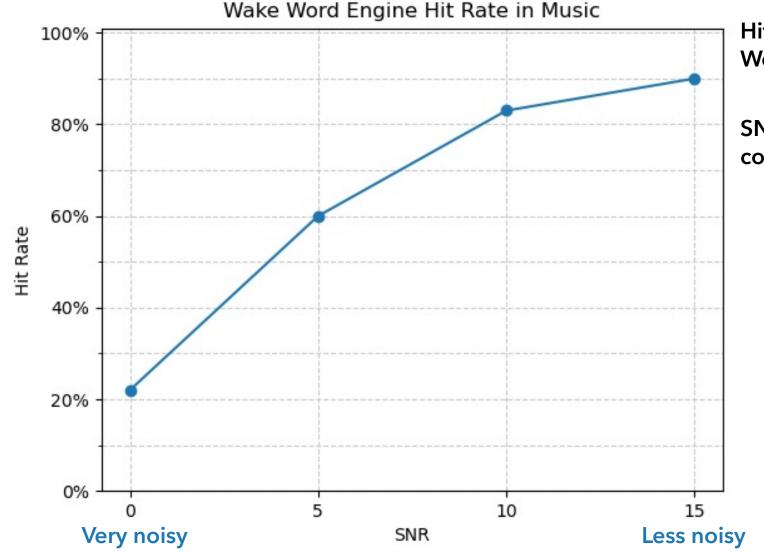
WHY DO WE NEED AUDIO FRONT END?

Real life is noisy.



Combination of speech and noise Cocktail party problem (Cherry, 1953)

WHY DO WE NEED AUDIO FRONT END?



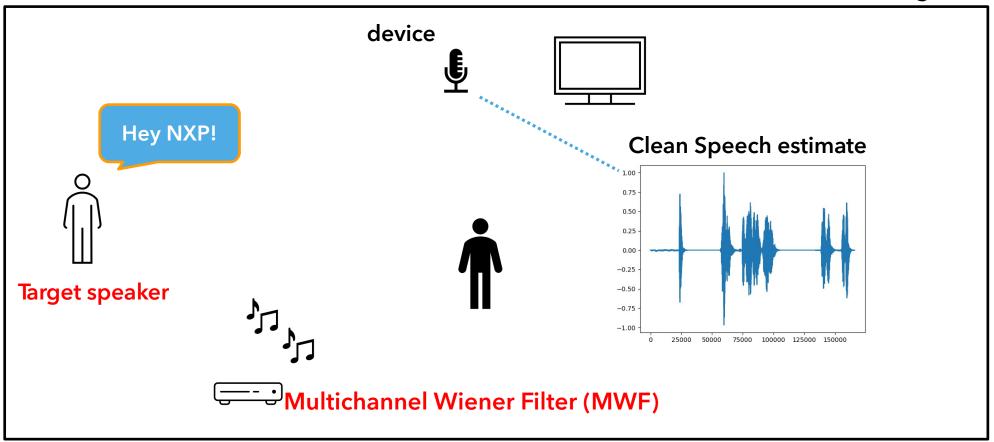
Hit Rate: Percentage of well detected Wake Word

SNR (signal-to-noise ratio): Level of speech compared to level of noise

Performance drops when the Signal-to-noise ratio (SNR) decreases.

WHY DO WE NEED AUDIO FRONT END?

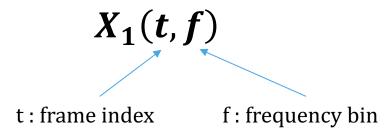
Real life is noisy.

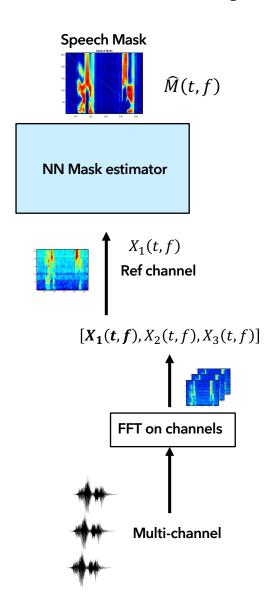


$[X_1(t,f),X_2(t,f),X_3(t,f)]$ FFT on channels Multi-channel

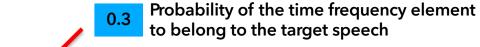
Parameters

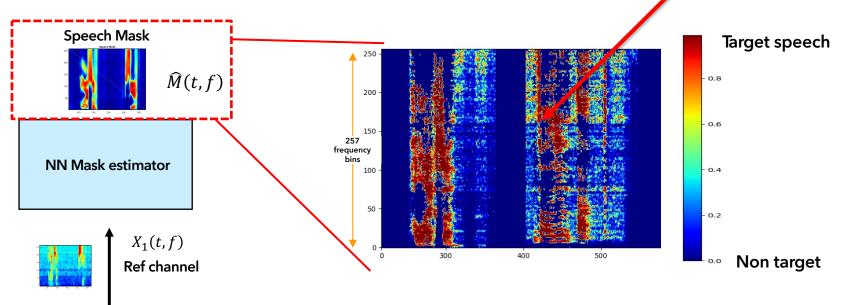
Time frame: 10ms, 16kHz FFT size: 512 pts



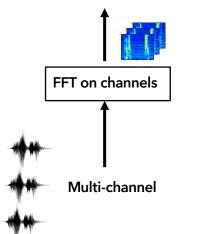


From classical hybrid MWF...





$$[X_1(t,f), X_2(t,f), X_3(t,f)]$$

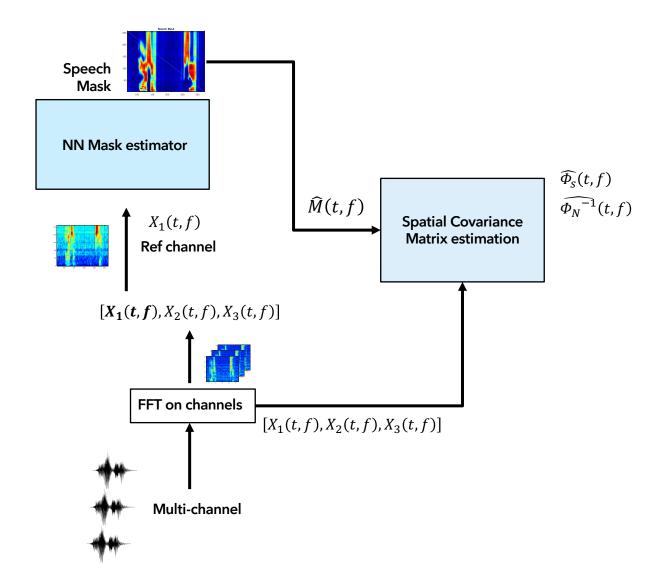


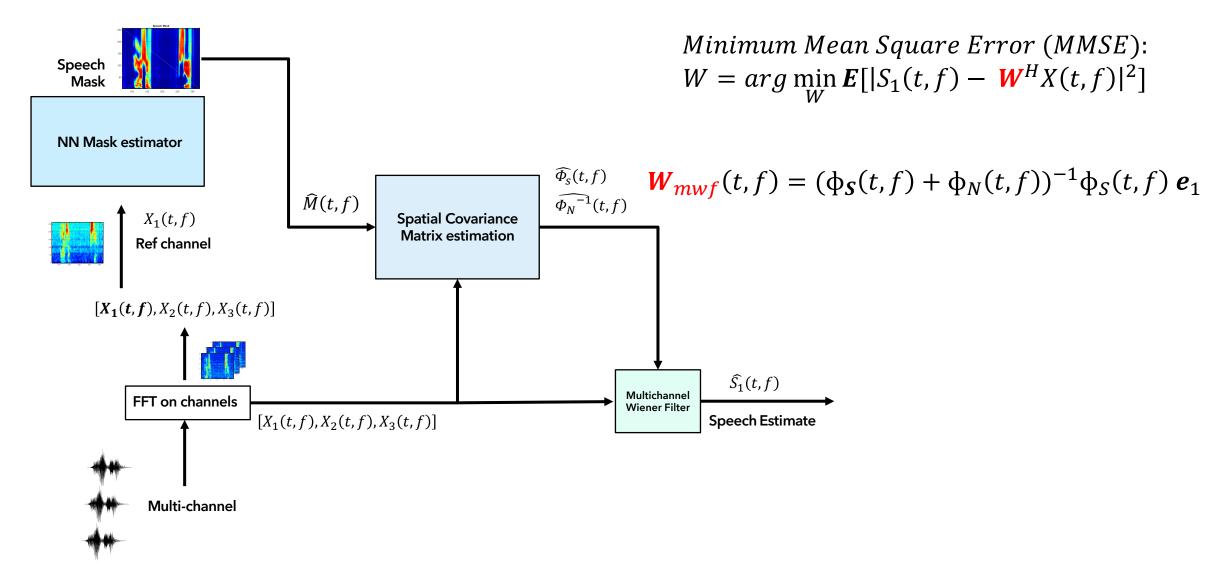
Input signal

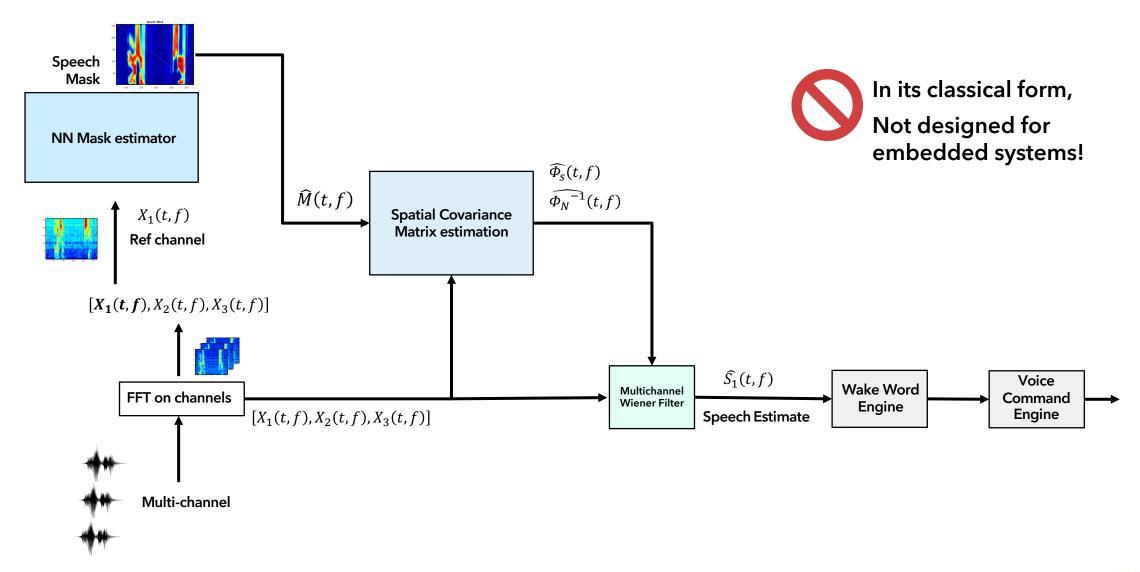
Speech Noise X(t,f) = S(t,f) + N(t,f)

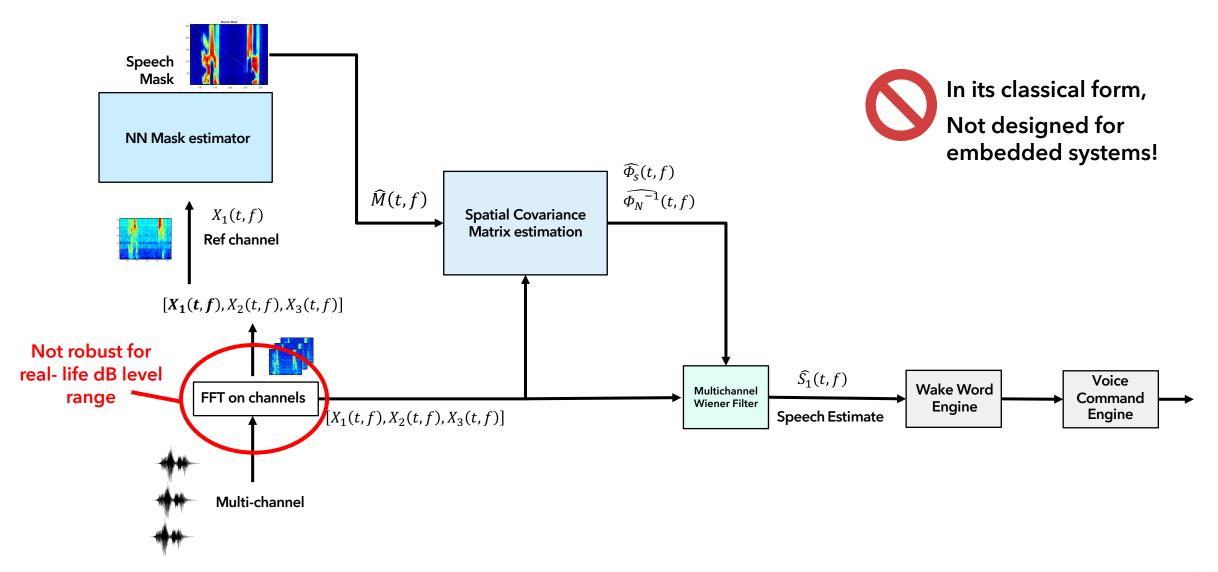
Ideal Ratio Mask:

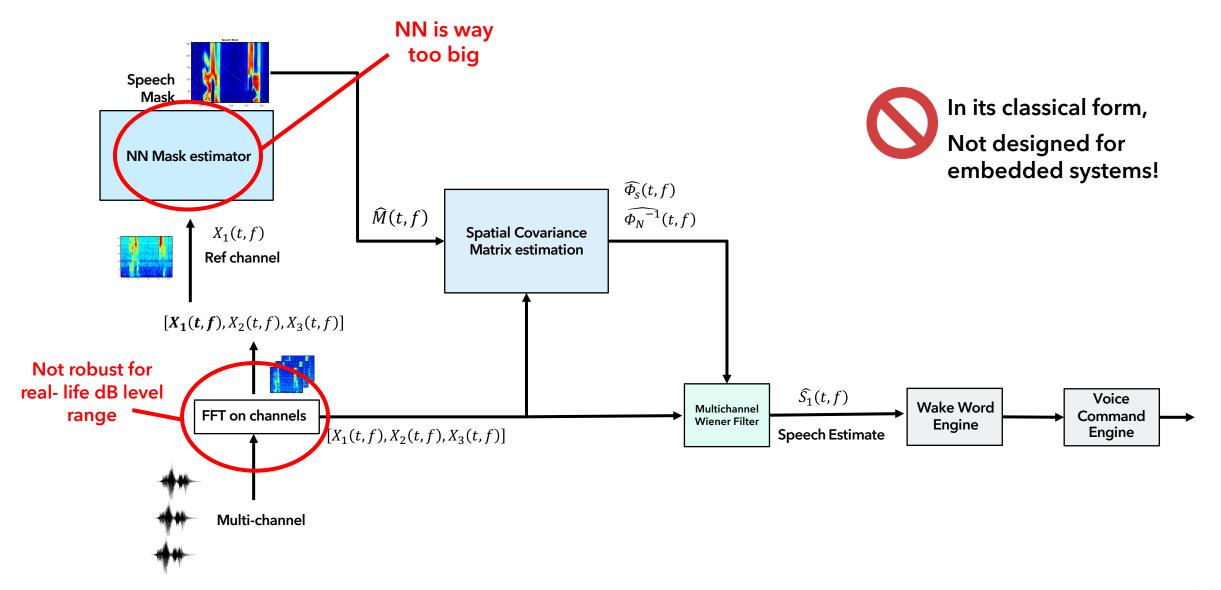
$$IRM(t,f) = \left(\frac{|S(t,f)|^2}{|S(t,f)|^2 + |N(t,f)|^2}\right)^{1/2}$$

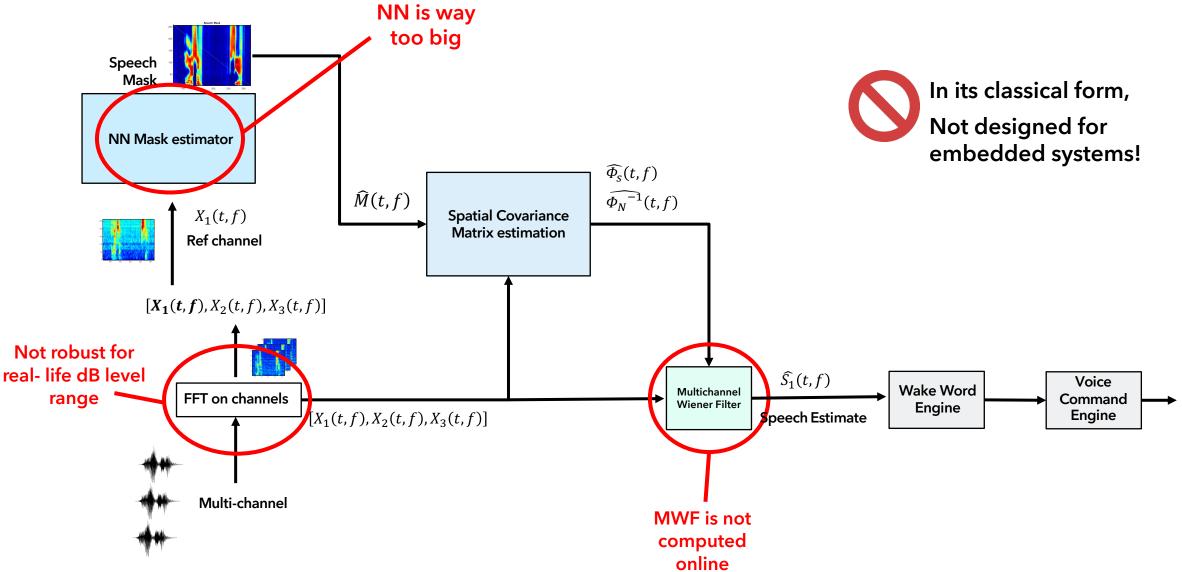












NN Mask estimator

Spatial Covariance Matrix estimation

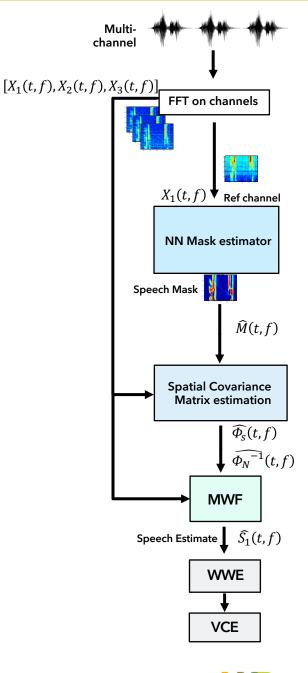
FFT on channels

Multichannel Wiener Filter Wake Word Engine Voice Command Engine

Challenges of the embedded solution

 Main algorithm are Wake Word and Voice Command Engines block Audio Front End is added, so we have a size constraint on platform integration

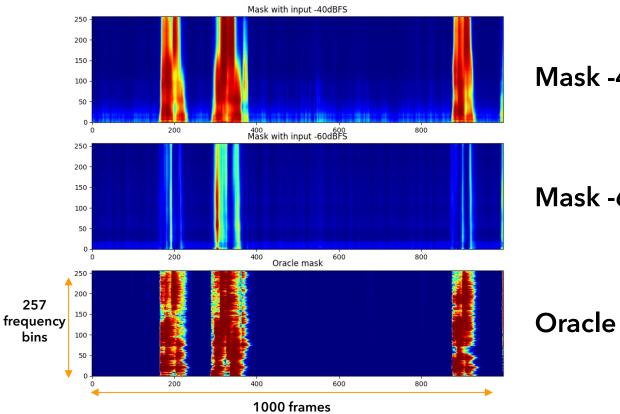
Focus on increase performances of the Wake Word Detection.
 We didn't see any clear correlation with direct improvement of classic metrics like Signal-to-Noise ratio, Signal-to-Distortion ratio...



NN robustness to input dB level

Neural Network not robust to input dB level

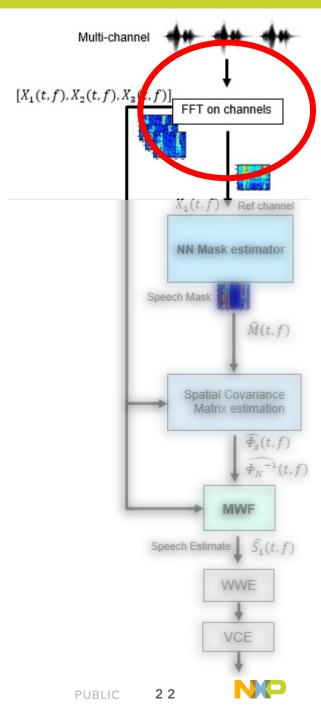
- Input dB level [-40dB full scale (dBFS),-60dBFS]
- Trained at -40dBFS, we see drop of performances at -60dBFS



Mask -40dBFS

Mask -60dBFS

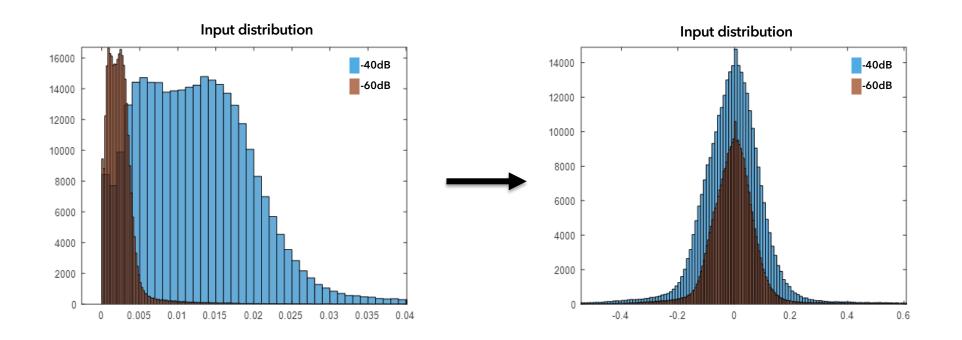
Oracle Mask

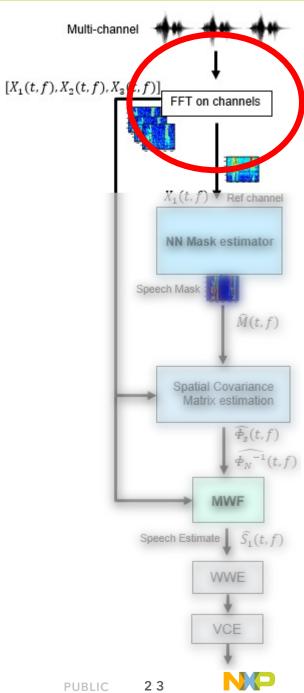


NN robustness to input dB level

Apply transformation on input data

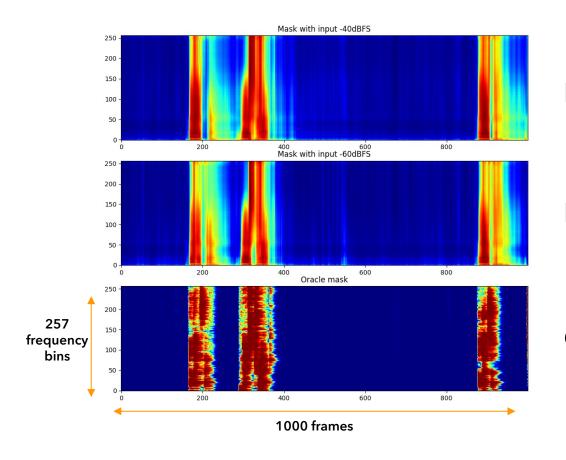
Normalize the data based on energy and root compression to arrange distribution





NN robustness to input dB level

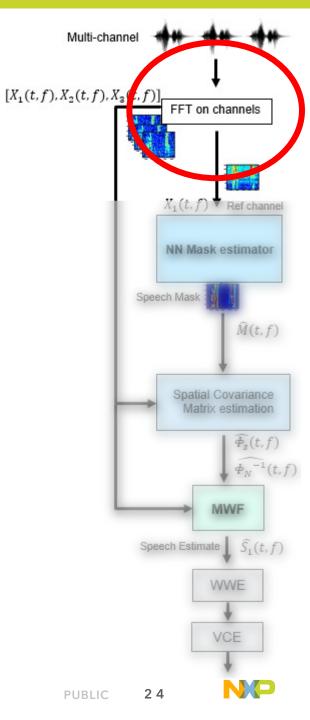
NN is now robust to input dB level range [-40dBFS, -60dBFS]!



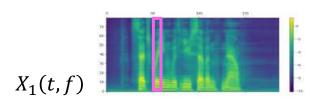
Mask -40dBFS

Mask -60dBFS

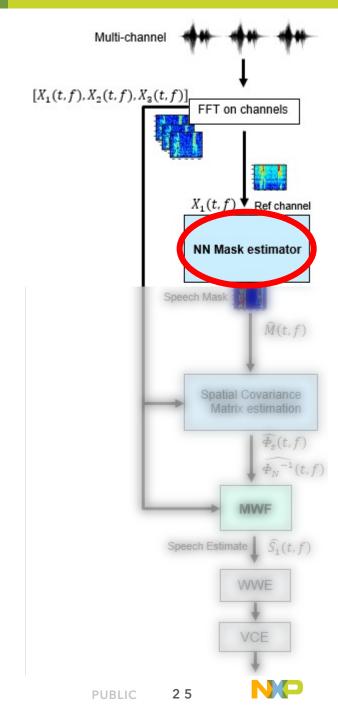
Oracle Mask

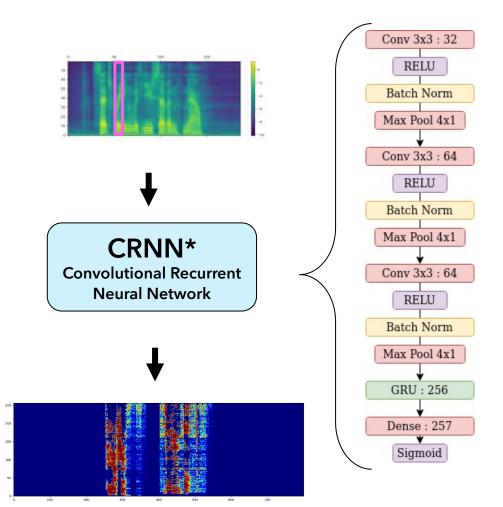


NN too big to fit on platform



21 consecutive frames
x
257 FFT frequency bins





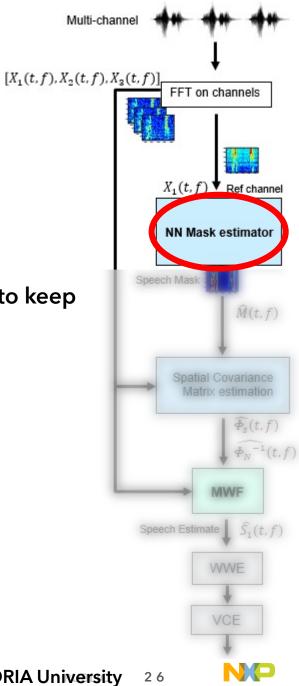
Parameters: 470k

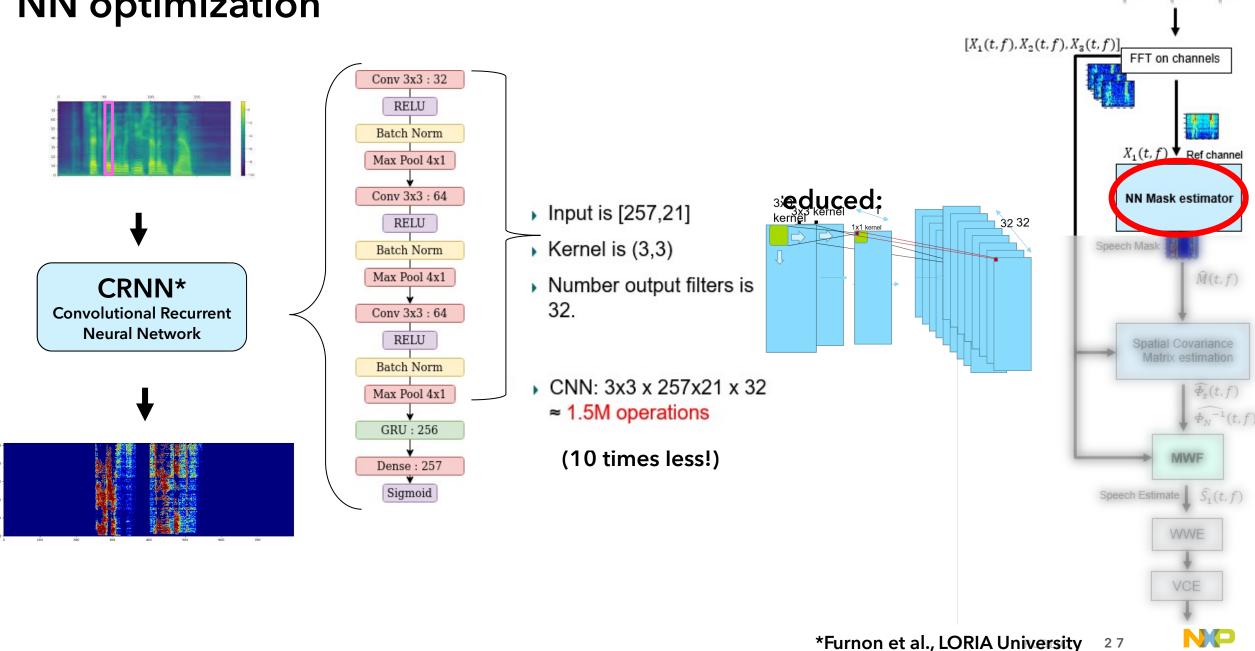
Number of MACs: 33M

CPU should run at 63240 MHz to keep

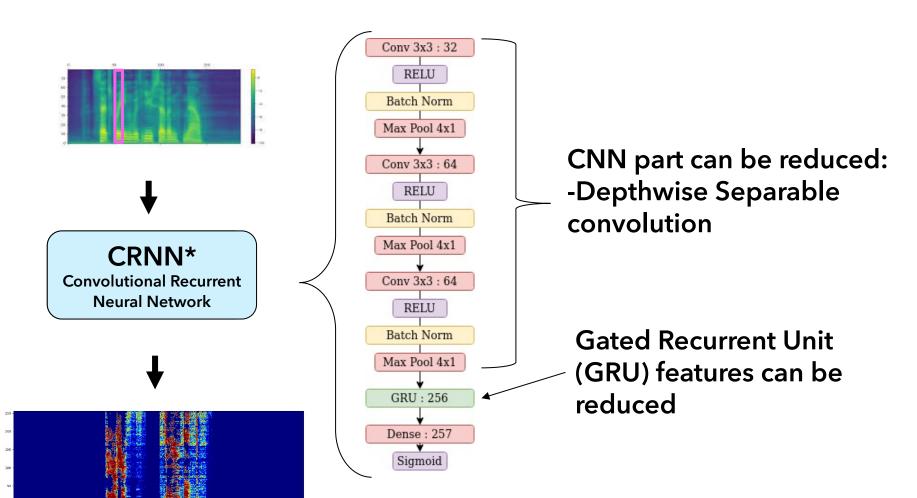
real-time predictions

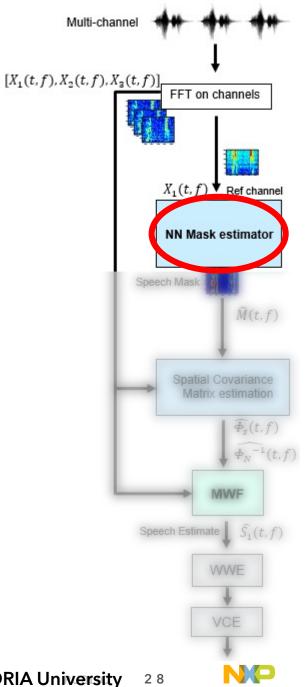
• Objective <300MHz

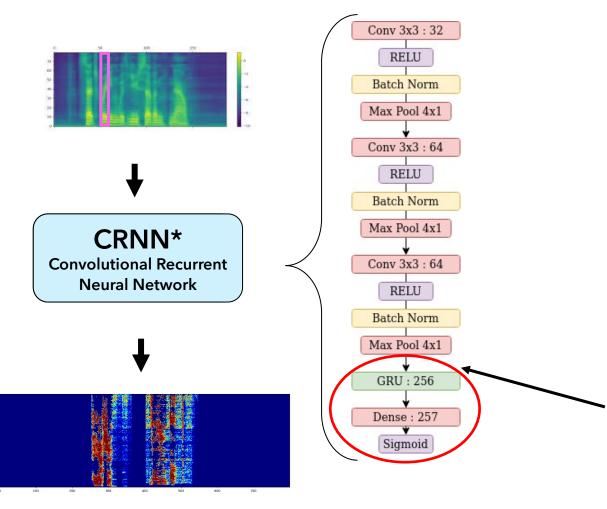




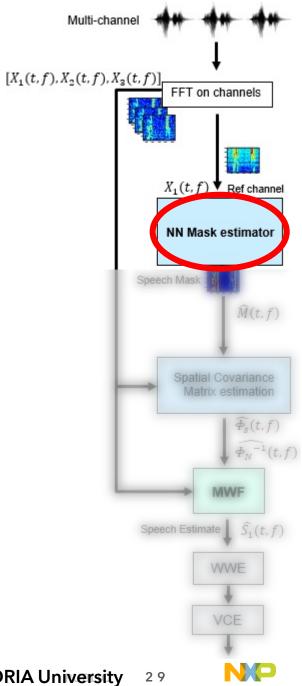
Multi-channel

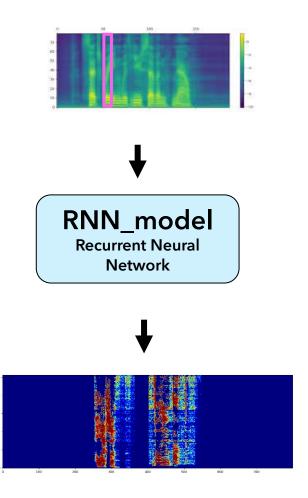




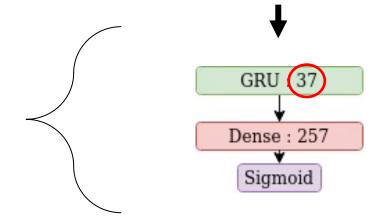


Directly give an embedded feature as input: melspectrogram and only keep recurrent layer

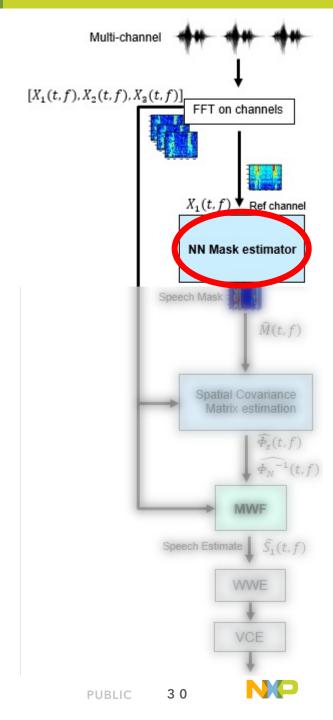


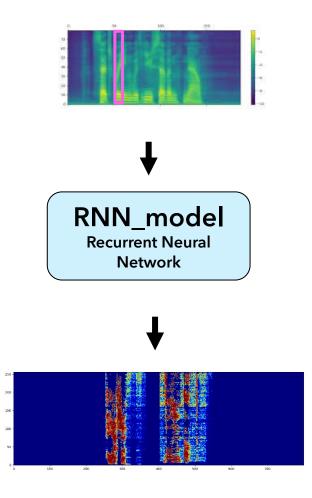


21 consecutive frames x 40 normalized mel bins

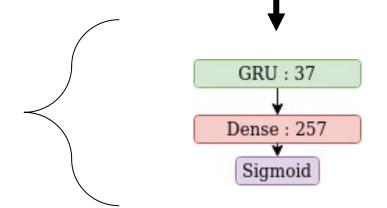


Network architecture was optimized: hyperparameter tuning with random search (Raytune)





21 consecutive frames x 40 normalized mel bins

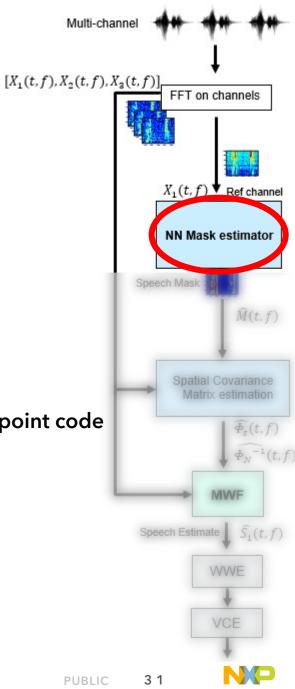


Number of Parameters: 18k

Number of MACs: 200k

300MHz C floating point code

Network architecture was optimized: hyperparameter tuning with random search (Raytune)



16-bit symmetric post-training quantization using GLOW

From Float: 300MHz

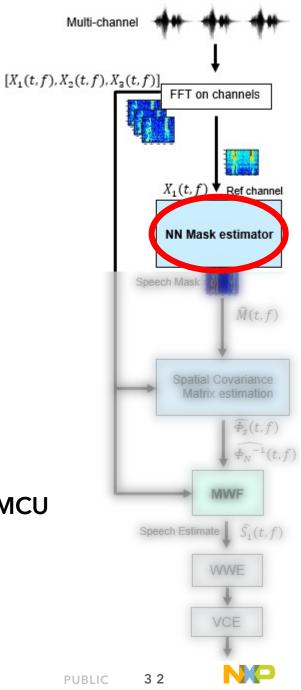
To Quantized 16 bits: 150MHz

GRU: 37 Dense : 257 Sigmoid

- **Using Truncated Backpropagation Through Time (TBPTT):** Frame-by-frame decisions
- (We used to process 21 frames to compute 1 output)

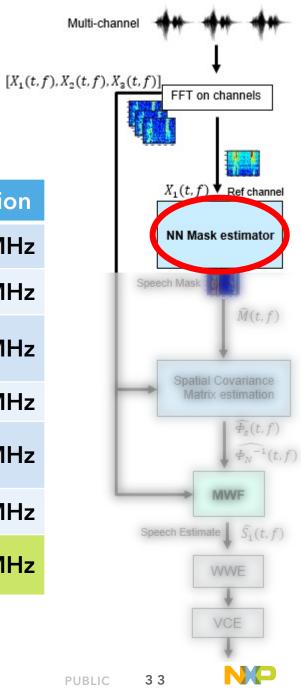
28.2MHz float on the Arm Cortex-M7 (NXP-RT1060) MCU

12MHz for the 16-bits quantized version



NN summary

Model	Input	Parameters	MACs	Consumption
CRNN	FFT[21, 257]	470k	33M	63240 MHz
CRNN Light	FFT[21, 257]	43k	2.5M	1800 MHz
Depth-CRNN Light	FFT[21, 257]	36k	800k	840 MHz
RNN	Mel [21,40]	18k	200k	300 MHz
RNN _{quant}	Mel [21, 40]	18k	200k	150 MHz
TBPTT-RNN	Mel [1, 40]	18k	18k	28.2 MHz
TBPTT-RNN _{quant}	Mel [1, 40]	18k	18k	12 MHz



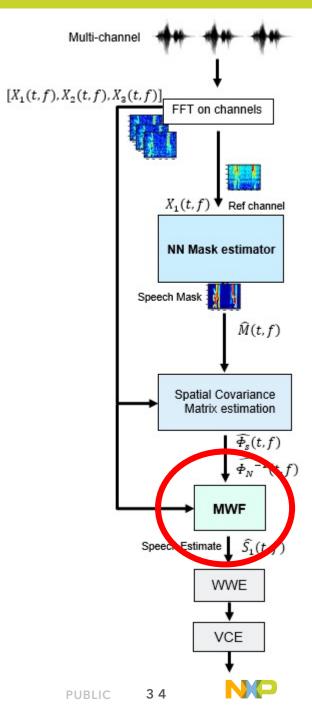
Multichannel Wiener Filter optimization

$$\widehat{\Phi_{\scriptscriptstyle S}}(t,f)$$
 Used to be computed not in real-time

➤ We now recursively estimate covariance matrices of noise to solve the Multi Channel Wiener equation:

$$W_{mwf}(t,f) = (\phi_S(t,f) + \phi_N(t,f))^{-1}\phi_S(t,f) e_1$$

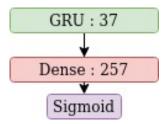
$$MMSE: W = arg \min_{W} \mathbf{E}[|S_1(t,f) - W^HX(t,f)|^2]$$
Target speaker



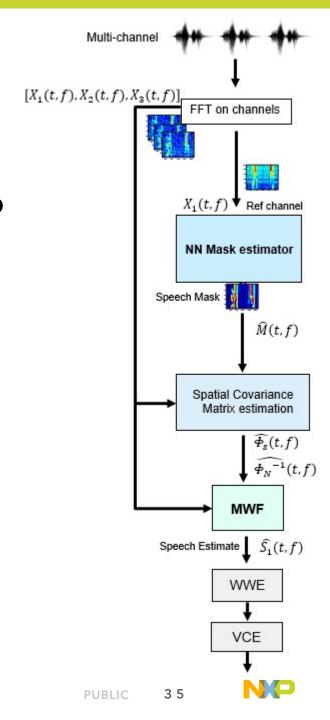
Embedded solution

CHOSEN SOLUTION

-18k parameter NN quantized in 16 bits, taking only 12MHz to predict a mask-frame



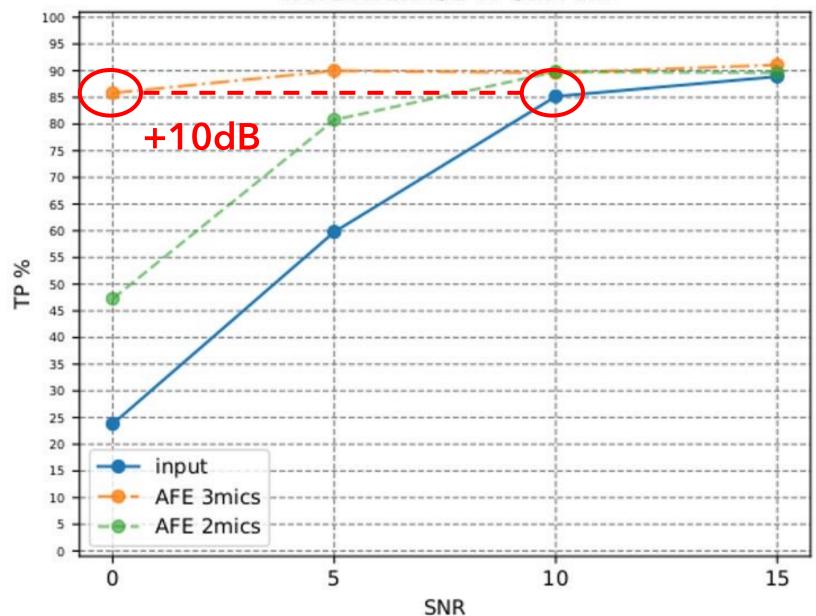
-Full Speech enhancement solution is taking 160MHz in the 3-mics configuration and about 105MHz in the 2-mics configuration



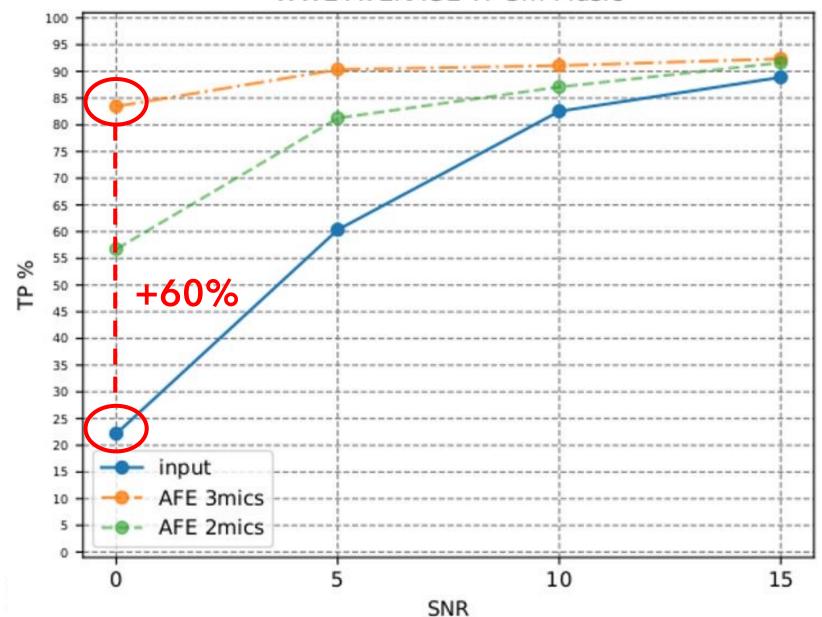
PERFORMANCE FROM AMAZON FAR-FIELD TEST

- Test file is composed of 50 pairs of Wake Word + Voice commands
- The speaker is at 3m distance from the device
- · We test in different noise configurations: Silence, Pink, Music, Multi-Talker
- Signal-to-Noise ratio is taken between 0dB (same level speech and noise) and 15dB (power of speech is about 4.5x noise level)
- We measure True Positive Wake Word Hit rate: Well detected keywords at the right time

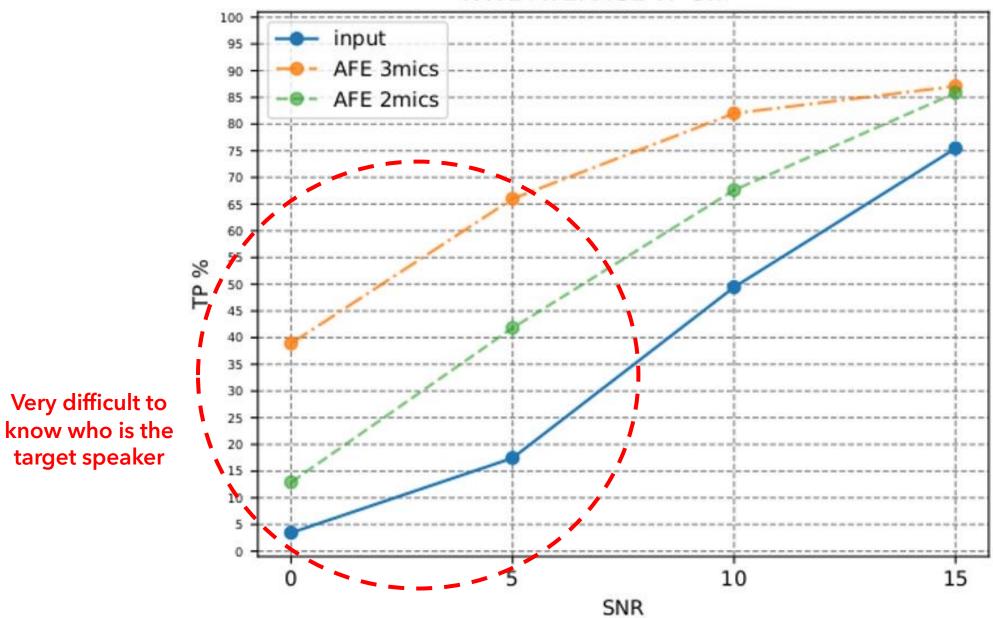
WWE AVERAGE TP 3m Pink



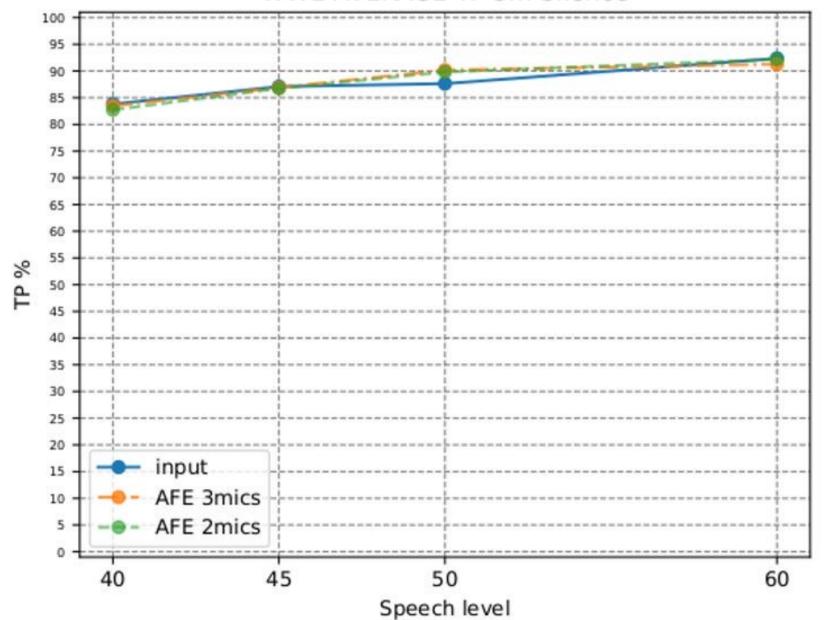
WWE AVERAGE TP 3m Music



WWE AVERAGE TP 3m Multi Talker

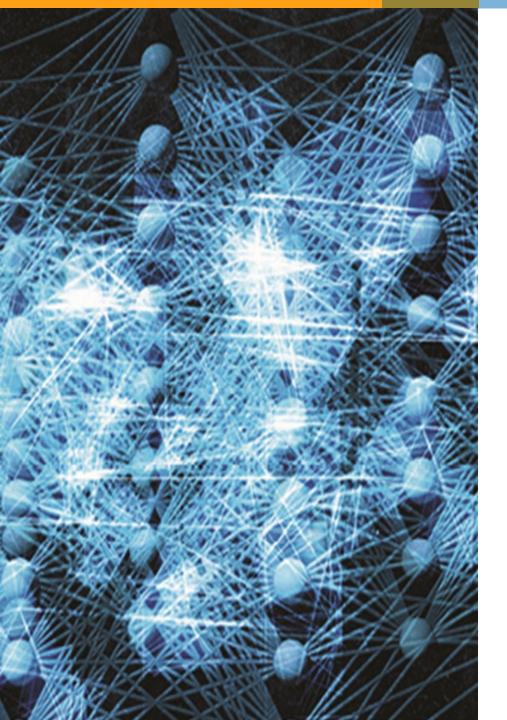


WWE AVERAGE TP 3m Silence



CONCLUSION

- Introduced a speech enhancement solution for low power devices
- The solution is real-time and embedded on a small platform
- Improved by 40% the Wake word and Voice Commands hit rate in a three microphone (3-mic) configuration



ANY QUESTIONS?

References and helpful links

- eIQ® ML Software Development Environment (https://www.nxp.com/eiq)
- NXP's voice intelligent technology (VIT) library (https://www.nxp.com/vit)
- eIQ ML/AI Training Series
 (https://www.nxp.com/mltraining)
- MCUXpresso Software and Tools
 (https://www.nxp.com/mcuxpresso)

SECURE CONNECTIONS FOR A SMARTER WORLD

tinyML Summit 2022 Sponsors

Sony Semiconductor Solutions Corporation

Copyright Notice

This presentation in this publication was presented as a tinyML® Summit 2022. The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org