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SCALABLE COMPUTE PLATFORMS
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VOICE UI

Wake up your device and 
control action using your 

voice
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VOICE UI

• Voice UI constrained by low power 

Voice UI runs on NXP i.MX RT1060
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VOICE UI

• Voice UI constrained by low power 

Voice UI runs on NXP i.MX RT1060

NXP i.MX RT1060 Block diagram

Arm Cortex-M7 runs at 600MHz
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VOICE UI

• Voice UI constrained by low power 

Voice UI runs on NXP i.MX RT1060

• Low latency UI

Trigger delay < 200ms to fit market requirements

• High performance requirements 

False Positives (FP) on the market are ≤3 / 24h
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VOICE UI

• Voice UI constrained by low power 

Voice UI runs on NXP i.MX RT1060

• Low latency UI

Trigger delay < 200ms to fit market requirements

• High performance requirements 

False Positives (FP) on the market are ≤3 / 24h

Very high requirements!!

𝐹𝑃 = 3 ∗
10𝑚𝑠

24ℎ ∗ 60min ∗ 60𝑠

𝑇𝑁𝑟𝑎𝑡𝑒 = 99.99996%

𝐹𝑃𝑟𝑎𝑡𝑒 = 34.10!"%
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WHY DO WE NEED AUDIO FRONT END?

Real life is noisy.

Cocktail party problem (Cherry, 1953)

Hey NXP!

Living room

device

Combination of speech and noise

Noisy speech 
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WHY DO WE NEED AUDIO FRONT END?

Performance drops when the 

Signal-to-noise ratio (SNR) decreases.

Hit Rate: Percentage of well detected Wake 
Word

SNR (signal-to-noise ratio): Level of speech 
compared to level of noise

Very noisy Less noisy
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WHY DO WE NEED AUDIO FRONT END?

Real life is noisy.

Hey NXP!

Living room

device

Target speaker

Multichannel Wiener Filter (MWF)

Clean Speech estimate
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FFT on channels

Multi-channel

𝑿𝟏 𝒕, 𝒇 , 𝑋" 𝑡, 𝑓 , 𝑋# 𝑡, 𝑓

Parameters
Time	frame:	10ms,	16kHz

FFT size:	512	pts

𝑿𝟏 𝒕, 𝒇

f	:	frequency	bint	:	frame	index

From classical hybrid Multichannel Wiener Filter…
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FFT on channels

Multi-channel

Ref channel

NN Mask estimator

!𝑀 𝑡, 𝑓

𝑋$ 𝑡, 𝑓

𝑿𝟏 𝒕, 𝒇 , 𝑋" 𝑡, 𝑓 , 𝑋# 𝑡, 𝑓

From classical hybrid Multichannel Wiener Filter …
Speech Mask
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From classical hybrid MWF…

FFT on channels

Multi-channel

Ref channel

NN Mask estimator

Speech Mask

!𝑀 𝑡, 𝑓

𝑋$ 𝑡, 𝑓

𝑿𝟏 𝒕, 𝒇 , 𝑋" 𝑡, 𝑓 , 𝑋# 𝑡, 𝑓

Probability of the time frequency element 
to belong to the target speech0.3

Target speech

Non target

𝑋 𝑡, 𝑓 = 𝑆 𝑡, 𝑓 + 𝑁(𝑡, 𝑓)

Input signal 
NoiseSpeech

Ideal	Ratio	
Mask:

𝐼𝑅𝑀 𝑡, 𝑓 =
𝑆 𝑡, 𝑓 !

𝑆 𝑡, 𝑓 ! + 𝑁 𝑡, 𝑓 !

"/!

257 
frequency 

bins
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From classical hybrid Multichannel Wiener Filter …

FFT on channels

Multi-channel

Ref channel

NN Mask estimator

Speech 
Mask

*𝛷% 𝑡, 𝑓
,𝛷&'$ 𝑡, 𝑓!𝑀 𝑡, 𝑓

𝑋$ 𝑡, 𝑓

𝑋$ 𝑡, 𝑓 , 𝑋" 𝑡, 𝑓 , 𝑋# 𝑡, 𝑓

𝑿𝟏 𝒕, 𝒇 , 𝑋" 𝑡, 𝑓 , 𝑋# 𝑡, 𝑓

Spatial Covariance 
Matrix estimation
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From classical hybrid Multichannel Wiener Filter …

FFT on channels

Multi-channel

Ref channel

NN Mask estimator

Speech 
Mask

Multichannel
Wiener Filter

Speech Estimate

!𝑀 𝑡, 𝑓
𝑋$ 𝑡, 𝑓

-𝑆$ 𝑡, 𝑓

𝑋$ 𝑡, 𝑓 , 𝑋" 𝑡, 𝑓 , 𝑋# 𝑡, 𝑓

𝑿𝟏 𝒕, 𝒇 , 𝑋" 𝑡, 𝑓 , 𝑋# 𝑡, 𝑓

*𝛷% 𝑡, 𝑓
,𝛷&'$ 𝑡, 𝑓

Spatial Covariance 
Matrix estimation

𝑾!"# 𝑡, 𝑓 = (ɸ𝑺 𝑡, 𝑓 + ɸ% 𝑡, 𝑓 )&'ɸ( 𝑡, 𝑓 𝒆'

𝑀𝑖𝑛𝑖𝑚𝑢𝑚𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑀𝑀𝑆𝐸):
𝑊 = 𝑎𝑟𝑔min

)
𝑬[ 𝑆' 𝑡, 𝑓 − 𝑾*𝑋 𝑡, 𝑓 +]
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From classical hybrid Multichannel Wiener Filter …

FFT on channels

Multi-channel

Ref channel

NN Mask estimator

Spatial Covariance 
Matrix estimation

Speech Estimate

Wake Word
Engine

Voice 
Command

Engine

!𝑀 𝑡, 𝑓
𝑋$ 𝑡, 𝑓

-𝑆$ 𝑡, 𝑓

𝑋$ 𝑡, 𝑓 , 𝑋" 𝑡, 𝑓 , 𝑋# 𝑡, 𝑓

𝑿𝟏 𝒕, 𝒇 , 𝑋" 𝑡, 𝑓 , 𝑋# 𝑡, 𝑓

In its classical form, 

Not designed for 
embedded systems!

*𝛷% 𝑡, 𝑓
,𝛷&'$ 𝑡, 𝑓

Multichannel
Wiener Filter

Speech 
Mask
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From classical hybrid Multichannel Wiener Filter …

FFT on channels

Multi-channel

Ref channel

NN Mask estimator

Speech Estimate

!𝑀 𝑡, 𝑓
𝑋$ 𝑡, 𝑓

-𝑆$ 𝑡, 𝑓

𝑋$ 𝑡, 𝑓 , 𝑋" 𝑡, 𝑓 , 𝑋# 𝑡, 𝑓

𝑿𝟏 𝒕, 𝒇 , 𝑋" 𝑡, 𝑓 , 𝑋# 𝑡, 𝑓

In its classical form, 

Not designed for 
embedded systems!

*𝛷% 𝑡, 𝑓
,𝛷&'$ 𝑡, 𝑓

Not robust for 
real- life dB level 

range Multichannel
Wiener Filter

Wake Word
Engine

Voice 
Command

Engine

Spatial Covariance 
Matrix estimation

Speech 
Mask
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From classical hybrid Multichannel Wiener Filter …

FFT on channels

Multi-channel

Ref channel

NN Mask estimator

!𝑀 𝑡, 𝑓
𝑋$ 𝑡, 𝑓

𝑋$ 𝑡, 𝑓 , 𝑋" 𝑡, 𝑓 , 𝑋# 𝑡, 𝑓

𝑿𝟏 𝒕, 𝒇 , 𝑋" 𝑡, 𝑓 , 𝑋# 𝑡, 𝑓

In its classical form, 

Not designed for 
embedded systems!

*𝛷% 𝑡, 𝑓
,𝛷&'$ 𝑡, 𝑓

NN is way 
too big

Speech Estimate

-𝑆$ 𝑡, 𝑓
Multichannel
Wiener Filter

Wake Word
Engine

Voice 
Command

Engine

Spatial Covariance 
Matrix estimation

Not robust for 
real- life dB level 

range

Speech 
Mask
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From classical hybrid Multichannel Wiener Filter …

FFT on channels

Multi-channel

Ref channel

NN Mask estimator

!𝑀 𝑡, 𝑓
𝑋$ 𝑡, 𝑓

𝑋$ 𝑡, 𝑓 , 𝑋" 𝑡, 𝑓 , 𝑋# 𝑡, 𝑓

𝑿𝟏 𝒕, 𝒇 , 𝑋" 𝑡, 𝑓 , 𝑋# 𝑡, 𝑓

In its classical form, 

Not designed for 
embedded systems!

*𝛷% 𝑡, 𝑓
,𝛷&'$ 𝑡, 𝑓

NN is way 
too big

MWF is not 
computed 

online

Speech Estimate

-𝑆$ 𝑡, 𝑓
Multichannel
Wiener Filter

Wake Word
Engine

Voice 
Command

Engine

Spatial Covariance 
Matrix estimation

Not robust for 
real- life dB level 

range

Speech 
Mask



2 0PUBLIC

From classical hybrid Multichannel Wiener Filter …

FFT on channels

NN Mask estimator

Multichannel
Wiener Filter

Wake Word
Engine

Voice 
Command

Engine

Spatial Covariance 
Matrix estimation
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Challenges of the embedded solution
FFT on channels

Multi-
channel

Ref channel

NN Mask estimator

Speech Mask

Spatial Covariance 
Matrix estimation

MWF

Speech Estimate

WWE

VCE

!𝛷! 𝑡, 𝑓
&𝛷"#$ 𝑡, 𝑓

'𝑀 𝑡, 𝑓

𝑋$ 𝑡, 𝑓

'𝑆$ 𝑡, 𝑓

𝑋$ 𝑡, 𝑓 , 𝑋% 𝑡, 𝑓 , 𝑋& 𝑡, 𝑓

• Main algorithm are Wake Word and Voice Command Engines block 
Audio Front End is added, so we have a size constraint on platform 
integration

• Focus on increase performances of the Wake Word Detection. 
We didn’t see any clear correlation with direct improvement of classic 
metrics like Signal-to-Noise ratio, Signal-to-Distortion ratio…
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• Input dB level [-40dB full scale (dBFS),-60dBFS]

• Trained at -40dBFS, we see drop of performances at -60dBFS

Mask -40dBFS

Mask -60dBFS

Oracle Mask

Neural Network not robust to input dB level 

NN robustness to input dB level

257 
frequency 

bins

1000 frames
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-40dB

-60dB

Input distribution Input distribution

-40dB

-60dB

• Apply transformation on input data

Normalize the data based on energy and root compression to arrange 
distribution

NN robustness to input dB level
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• NN is now robust to input dB level range [-40dBFS, -60dBFS]!

Mask -40dBFS

Mask -60dBFS

Oracle Mask

NN robustness to input dB level

257 
frequency 

bins

1000 frames
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NN optimization

21 consecutive frames
x 

257 FFT frequency bins

𝑋/ 𝑡, 𝑓

NN too big to fit on platform
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CRNN*
Convolutional Recurrent 

Neural Network

*Furnon et al., LORIA University

Parameters: 470k
Number of MACs: 33M
• CPU should run at 63240 MHz to keep 

real-time predictions
• Objective <300MHz

NN optimization
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CNN part can be reduced:
-Depthwise Separable 
convolution

(10 times less!)

CRNN*
Convolutional recurrent 

Neural Netwrk

NN optimization

CRNN*
Convolutional Recurrent 

Neural Network



2 8PUBLIC*Furnon et al., LORIA University

CNN part can be reduced:
-Depthwise Separable 
convolution

Gated Recurrent Unit 
(GRU) features can be 
reduced

CRNN*
Convolutional recurrent 

Neural Network

NN optimization

CRNN*
Convolutional Recurrent 

Neural Network
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Directly give an embedded 
feature as input: mel-

spectrogram and only keep 
recurrent layer

CRNN*
Convolutional recurrent 

Neural Netwrk

NN optimization

CRNN*
Convolutional Recurrent 

Neural Network
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21 consecutive frames
x 

40 normalized mel bins

Network architecture was 
optimized: hyperparameter tuning 

with random search (Raytune)

RNN_model
Recurrent Neural 

Network

NN optimization
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21 consecutive frames
x 

40 normalized mel bins

Network architecture was 
optimized: hyperparameter tuning 

with random search (Raytune)

RNN_model
Recurrent Neural 

Network

NN optimization

300MHz C floating point code

Number of 
Parameters: 18k

Number of MACs: 
200k
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• 16-bit symmetric post-training quantization using GLOW

From Float: 300MHz
To Quantized 16 bits: 150MHz

• Using Truncated Backpropagation Through Time (TBPTT):
Frame-by-frame decisions 

• (We used to process 21 frames to compute 1 output)

28.2MHz float on the Arm Cortex-M7 (NXP-RT1060) MCU

12MHz for the16-bits quantized version

NN optimization
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Model Input Parameters MACs Consumption

CRNN FFT [21, 257] 470k 33M 63240 MHz

CRNN Light FFT [21, 257] 43k 2.5M 1800 MHz

Depth-CRNN
Light

FFT [21, 257] 36k 800k 840 MHz

RNN Mel  [21, 40] 18k 200k 300 MHz

RNNquant Mel [21, 40] 18k 200k 150 MHz

TBPTT-RNN Mel [1, 40] 18k 18k 28.2 MHz

TBPTT-RNNquant Mel [1, 40] 18k 18k 12 MHz

NN summary

NN optimization
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Multichannel Wiener Filter optimization

Ø We now recursively estimate covariance matrices of noise to solve 
the Multi Channel Wiener equation:

*𝛷% 𝑡, 𝑓
,𝛷&'$ 𝑡, 𝑓

Used to be computed not in real-time

𝑊!"# 𝑡, 𝑓 = (ɸ( 𝑡, 𝑓 + ɸ% 𝑡, 𝑓 )&'ɸ( 𝑡, 𝑓 𝑒'

𝑀𝑀𝑆𝐸:𝑊 = 𝑎𝑟𝑔min
)

𝑬[ 𝑆' 𝑡, 𝑓 − 𝑊*𝑋 𝑡, 𝑓 +]

Target speaker
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Embedded solution
C H O S E N S O LU T I O N

-18k parameter NN quantized in 16 bits, taking only 12MHz to 
predict a mask-frame

-Full Speech enhancement solution is taking 160MHz in the 3-
mics configuration and about 105MHz in the 2-mics 
configuration
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PERFORMANCE FROM AMAZON FAR-FIELD TEST

• Test file is composed of 50 pairs of Wake Word + Voice commands

• The speaker is at 3m distance from the device

• We test in different noise configurations: Silence, Pink, Music, Multi-Talker

• Signal-to-Noise ratio is taken between 0dB (same level speech and noise) and 
15dB (power of speech is about 4.5x noise level) 

• We measure True Positive Wake Word Hit rate: Well detected keywords at the 
right time



3 7PUBLIC

PERFORMANCE

+10dB
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PERFORMANCE

+60%
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Multi Talker

Very difficult to 
know who is the 
target speaker

PERFORMANCE
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PERFORMANCE
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• Introduced a speech enhancement solution for low power devices

• The solution is real-time and embedded on a small platform

• Improved by 40% the Wake word and Voice Commands hit rate 
in a three microphone (3-mic) configuration

CONCLUSION
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References and helpful links

• eIQ® ML Software Development Environment
(https://www.nxp.com/eiq)

• NXP's voice intelligent technology (VIT) library 

(https://www.nxp.com/vit)

• eIQ ML/AI Training Series

( https://www.nxp.com/mltraining)

• MCUXpresso Software and Tools 
(https://www.nxp.com/mcuxpresso)

ANY QUESTIONS ?

https://www.nxp.com/eiq
https://www.nxp.com/vit
https://www.nxp.com/mltraining
https://www.nxp.com/mcuxpresso
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