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HYPERPARAMETER OPTIMIZATION (HPO)

It is the most well-known (and expensive) task!

� The ML algorithm is chosen a priori

� Let's suppose it has 𝑛 hyperparameters 𝛾1,… , 𝛾𝑛 with domains Γ1,… , Γ𝑛

� The so-called "search space" Γ ⊆ Γ1 × ⋯× Γ𝑛

� HPO is aimed a finding:    𝜸∗ ∈ argmin
𝜸∈Γ

1
𝑘
σ𝑖=1
𝑘 ℒ 𝐴𝜸,𝒟𝑡𝑟𝑎𝑖𝑛

𝑖 , 𝒟𝑣𝑎𝑙𝑖𝑑
(𝑖)

with ℒ 𝐴𝜸,𝒟𝑡𝑟𝑎𝑖𝑛
𝑖 , 𝒟𝑣𝑎𝑙𝑖𝑑

(𝑖) a loss-function, averaged on 𝒌 fold-cross validation

Thus, it is black-box and rexpensive, i.e., it equires to train and validate each 𝐴𝜸
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GRID SEARCH

Grid Search is the simplest hyperparameter search method:

� easy to implement

� embarassingly parallel

On the right: we wanto to search for the hyperparameter value
which maximizes the Accuracy [%] on k-fold cross validation

Hyperparameter value

Best configuration
over the grid
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DESPITE ITS SIMPLICITY, GRID SEARCH
IS HIGHLY INEFFICENT

� Let's suppose now to know the value of the Accuracy
over the entire search space…

� … it is clear that the configuration identified through
Grid Search is far away from the omptimum!

� The question is: "might we find a better solution by
using the same number of trials?"

Hyperparameter value

Best configuration
over the grid
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BAYESIAN OPTIMIZATION IN A NUGGET!
(A TOY EXAMPLE)

� Choose 3 random values for the hyperparameter and
observe the associated Accuracies

� Fit a probabilistic regression model (e.g., a Gaussian Process
– GP) to approximate the Accuracy over unseen values of the
hyperparameter

� A probabilistic regression model provides both a prediction
(solid blue line) and the associated uncertainty (blue shaded
area)

� Uncertainty is the key!

� If we consider the prediction only, the best expected value for
the validation loss would be already achieved…
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BAYESIAN OPTIMIZATION IN A NUGGET!
(A TOY EXAMPLE)

� Instead, let's be optimistic in front of the uncertainty!

� The upper bound of the shaded area represents the most
optimistic estimation for Accuracy with respect to the
hyperparameter's value

� This selection mechanism is known as Upper Confidence
Bound
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BAYESIAN OPTIMIZATION IN A NUGGET!
(A TOY EXAMPLE)

� Observe the Accuracy for the new hyperparameter value
and update the probabilistic regression model

� In this case the approximation is not changed so much,
but uncertainty is reduced

� We use again Upper Confidence Bound to select the next
promising configuration
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BAYESIAN OPTIMIZATION IN A NUGGET!
(A TOY EXAMPLE)

� In this case, the observed Accuracy leads to a significant
change in both the prediction and the uncertainty of the
probabilistic regression model

� Again, we can use Upper Confidence Bound to make our
next choice…
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BAYESIAN OPTIMIZATION IN A NUGGET!
(A TOY EXAMPLE)

� … and after 6 trials we are really close to the actual
optimum!

� If we have other trials we can still iterate…
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BAYESIAN OPTIMIZATION IN A NUGGET!
(A TOY EXAMPLE)

� Getting closer…

� …closer…

� …closer…

� … and closer!
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LET'S COMPARE GRID SEARCH WITH BAYESIAN OPTIMIZATION

The advantages
offered by BO are 
definitely clear!

For this reason, BO 
is the standard 

method for 
Automated Machine 
Learning (AutoML)

Hyperparameter value Hyperparameter value
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AUTOML AND NAS SOLUTIONS

� Google AutoML table (beta)

� Amazon Sage Maker

� Microsoft Research AutoML (it is a team)

� AutoKeras

� Keras Tuner – scalable hyperparameter optimization
framework: it comes with BO, Hyperband and Random
Search algorithms built-in

� …
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Intel CPUs Nvidia GPUs Cloud Platform Arduinos Arm Cortex M0s Nvidia Jetson TXs

Keras Tensorflow PyTorch

Limited number of 
frameworks

Tensorflow Lite

Tiny Machine LearningMachine Learning

TPU

Tensor CPUs

While many companies are currently leveraging on Cloud and specialized hardware (e.g., GPUs and TPUs) to train very accurate ML models,
the need to deploy and run these models on tiny devices is emerging as the most relevant challenge, with a massive untapped market
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AUTOML/NAS ON "BIG" PLATFORMS

� AutoML and NAS frameworks can find accurate models within small number of trials, but they are typically performed on
large computational platforms

� They cannot directly deal with deployability, leading to an accurate model which could result undeployable on a tiny device

AutoML/NAS

Trained model

Translate the 
trained model

Verify deployabiliy
the translated model

Translated model
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LET'S GO BACK TO OUR EXAMPLE AND INCLUDE "DEPLOYABILITY"

Most accurate model, 
but not deployableMost accurate and 

deployable model
Most accurate and 
deployable model

Best Grid Search

Best BO

If BO does not include, into its loop, any information about deployability, the final result could be worse than Grid Search!

Hyperparameter valueHyperparameter value
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THE PROPOSED APPROACH: AUTOTINYML
Using information about "deployability" of each trained Neural Network to constrain BO, in order to identify
both accurate and deployable models

AutoML/NAS

Trained model

Translate the 
trained model

Translated model

Constrained AutoML/NAS

Verify deployabiliy
the translated model

TINYML 2022 - SAN FRANCISCO, USA, MARCH 28-MARCH 30, 2022

https://www.google.it/imgres?imgurl=https%3A%2F%2Fimages-na.ssl-images-amazon.com%2Fimages%2FI%2F41CxgBL85WL._SX342_.jpg&imgrefurl=https%3A%2F%2Fwww.amazon.it%2FSTM32-ST-nucleo-f303re-nucleo-sviluppo%2Fdp%2FB01N6EKDEF&docid=yQL4-obcm_8t2M&tbnid=zIlCgS1elrw06M%3A&vet=10ahUKEwiXlOW91J7mAhWi3eAKHSrUAiMQMwjUASgKMAo..i&w=342&h=321&bih=1007&biw=1858&q=microcontroller%20st&ved=0ahUKEwiXlOW91J7mAhWi3eAKHSrUAiMQMwjUASgKMAo&iact=mrc&uact=8


AUTOTINYML

� We do not use multi-objective optimization because:

� more complicated and computational expensive

� solutions identified by multi-objective optimization are "trade-offs" between different goals (while we are interested in obtaining the most
accurate model given the hardware resources of the tiny device)

� We implemented a "constrained" AutoML/NAS framework, where:

� also deployability is black-box as well as the objective function (e.g., Accuracy on k fold-cross validation)

� Phase 1 of the approach is "deployability determination": hyperparameter configurations are sequentially selected to approximate the 
sub-region of the search space associated to deployable models

� Phase 2 of the approach is "constrained BO": we perform BO only on the sub-region estimated to contain configurations of deployable
models
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LET'S USE AGAIN OUR EXAMPLE

PHASE 1 – Deployability Determination

� We start with 4 configurations randomly selected

� Compute their kFCV Accuracies and verify deployability

� 3 out of 4 are deployable, 1 not

� We can compute our first estimate of the "deployable"
region (i.e., white region) by using a maximum margin
separation classifier

Hyperparameter valueTINYML 2022 - SAN FRANCISCO, USA, MARCH 28-MARCH 30, 2022



USE AGAIN OUR EXAMPLE

PHASE 1 – Deployability Determination

� The next configuration to evaluate is aimed (in this
phase) at improving the approximation of the actual
deployabile region

� So we select a configuration that is:

� close to the separation boundaries

� far from other configurations (to cover all the search space)
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USE AGAIN OUR EXAMPLE

PHASE 1 – Deployability Determination

� Consequently, we update our estimate of the deployable
region

� At this iteration we have a restriction of our initial
estimate…

� Then, we select the next configuration…
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USE AGAIN OUR EXAMPLE

PHASE 1 – Deployability Determination

� At this iteration we have an expansion of our estimate…

� … we continue with the next configuration
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USE AGAIN OUR EXAMPLE

PHASE 1 – Deployability Determination

� At this iteration we have a restriction of our estimate…

� Basically the estimate moves by shrinking or expanding
its boundaries depending on the deployability of the
evaluated configurations

� … we continue with the next configuration
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USE AGAIN OUR EXAMPLE

PHASE 1 – Deployability Determination

� At this iteration we have an expansion of the estimated
deployability region

� … we can now move to PHASE 2!
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USE AGAIN OUR EXAMPLE

PHASE 2 – Constrained BO

� Even if the approximation of the depolyable region is
not accurate, it is not an issue: the region is updated
anytime a not-deployable configuration is selected

� We generate the probabilistic regression model only
within the estimated deployability region

� Then select the next configuration according to Upper
Confidence Bound
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USE AGAIN OUR EXAMPLE

PHASE 2 – Constrained BO

� The probabilistic regression model is updated

� And the next configuration to evaluate is selected…
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USE AGAIN OUR EXAMPLE

PHASE 2 – Constrained BO

� We found the most accurate and deployable ML model!

� As in the previous cases (Grid Search and BO) we have
used 10 trials! (4 initial, 4 Phase 1, 2 Phase 2)

Hyperparameter value

Candelieri, A. (2019). Sequential model based optimization of partially defined functions 
under unknown constraints. Journal of Global Optimization, 1-23.
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EXPERIMENT #1

STM32L476RGT6 STM32F303K8T6

A benchmark classification task:
• User Identification From Walking Activity Data Set (from

the UCI Repository)

A baseline Neural Net:
• Convolutional Neural Network (CNN) for Human Activity

Recognition (HAR), available on GitHub

Metrics to optimize:
• Accuracy on a validation set

2 MCUs:
• STM32L476RGT6
• STM32F303K8T6

Deployability constraints:
• RAM≤128 KB (Big Board) / RAM ≤16 KB (Tiny Board)
• ROM≤1990 KB (Big Board) / ROM≤60 KB (Tiny Board)
• X-CROSS Accuracy 95% for both MCUs
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DEPLOYABILITY OF THE BASELINE CNN

� The CNN provided on GitHub (namely "Baseline")
resulted to be deployable only on the "Big Board" with
a compression factor x4 and x8

� We used our AutoTinyML to optimize the CNN's
hyperparameters while keeping fixed its architecture
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AUTOTINYML RESULTS

AutoTinyML AutoTinyML AutoTinyML AutoTinyML
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RESULTS
Perego, R., Candelieri, A., Archetti, F., & Pau, D. (2020, September). Tuning deep neural 
network’s hyperparameters constrained to deployability on tiny systems. In International 
Conference on Artificial Neural Networks (pp. 92-103). Springer, Cham.

AutoTinyML AutoTinyML AutoTinyML AutoTinyML
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EXPERIMENT #2

A benchmark classification task:
• Bottle level classification

A baseline Neural Net:
• Convolutional Neural Network (CNN) for Bottle level

classification (manually tuned)

Metrics to optimize:
• Accuracy on a validation set

Same MCUs and deployability constraints:
• STM32L476RGT6
• STM32F303K8T6

One architectural hyperparameter included
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DEPLOYABILITY OF THE BASELINE CNN

� The baseline CNN is not deployable on the two boards!
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RESULTS
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COMPARISON AGAINST OTHER AUTOML TOOLS (I.E., BOHB)
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CONCLUSIONS

� The approach allows to obtain accurate and deployable models, also on very tiny devices (the smallest STM MCUs), without requiring any
further model compression or pruning!

� In any case, model pruning or compression can be also applied in order to further reduce, if needed, the NN size or complexity

� Our tool exploits constraints related to MCU's hardware resources, differently from multi-objective strategies recently proposed for resource-
efficient AutoML/NAS on large platforms:

� Indeed, we are interested in searching for the most accurate model given the hardware limitations of the tiny device, instead of searching for
a trade-off between accuracy and resource-efficiency

� Including a further constraint (or an objective) related to MACC will allow us to address also requirements on latency of the prediction and
power/battery management
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THANK YOU!
antonio.candelieri@unimib.it
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