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• Not all accelerators are equal
Neural Architecture Search and its applications

• Deployment friendly optimization
Automatic quantization

• Optimization tools
AI Model Efficiency Toolkit (AIMET)

Agenda

AIMET is a product of Qualcomm Innovation Center, Inc. 
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Power and thermal
efficiency are essential

for on-device AI

The challenge of
AI workloads

Constrained mobile
environment

Very compute
intensive

Large,
complicated neural

network models

Complex
concurrencies

Always-on 

Real-time

Must be thermally
efficient for sleek,
ultra-light designs

Storage/memory 
bandwidth limitations

Requires long battery 
life for all-day use
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Holistic 
model efficiency 

research
Multiple axes to shrink

AI models and efficiently
run them on hardware

Quantization
Learning to reduce

bit-precision while keeping
desired accuracy 

Compression
Learning to prune

model while keeping
desired accuracy 

Compilation
Learning to compile

AI models for efficient
hardware execution

Neural 
architecture 

search
Learning to design smaller 

neural networks that are on par 
or outperform hand-designed

architectures on real 
hardware
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High cost
Brute force search is expensive 
>40,000 epochs per platform 

Lack diverse search
Hard to search in diverse spaces, with different
block-types, attention, and activations
Repeated training phase for every new scenario

Do not scale
Repeated training phase for every new device
>40,000 epochs per platform

Unreliable hardware models
Requires differentiable cost-functions
Repeated training phase for every new device

Existing NAS 
solutions do not 
address all the 
challenges
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Introducing new AI research

Efficient NAS with hardware-aware optimization 

A scalable method that finds pareto-optimal
network architectures in terms of accuracy and
latency for any hardware platform at low cost

Starts from an oversized pretrained
reference architecture

Distilling Optimal Neural 
Network Architectures

DONNA

DONNA

Oversized pretrained
reference architecture

Set of Pareto-optimal
network architectures

Low cost
Low start-up cost of 1000-4000 epochs,
equivalent to training 2-10 networks from scratch

Diverse search to find
the best models
Supports diverse spaces with different cell-types,
attention, and activation functions (ReLU, Swish, etc.)

Scalable
Scales to many hardware devices
at minimal cost 

Reliable hardware
measurements
Uses direct hardware measurements instead
of a potentially inaccurate hardware model

Distilling Optimal Neural Networks: Rapid Search in Diverse Spaces (Moons, Bert, et al., arXiv 2020)
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DONNA: Distilling Optimal Neural Network Architectures
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MSE
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MSE
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B. Build an accuracy model via 
knowledge distillation (KD) once

Build an accuracy model once but deploy to many scenarios

A. Define a
search space once

MSE

C. Evolutionary 
search in 24h

1 2 3 4 5

Define backbone:
• Fixed channels
• Head and Stem

Varying parameters:
• Conv kernel size
• Expansion factor 
• Num layers per 

block
• Layer types
• Num output 

channels

+ different compiler versions, 
different image sizes
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HW latency
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Using KD, train blocks from the search space 
using features from a reference model

Use the block losses to build an accuracy 
predictor for end-to-end architectures

MSE
3

Accuracy 
Predictor
for every
architecture

scenario-specific 
search

D. Sample and 
finetune

MSE
4

MSE
1

MSE
5

MSE
2

MSE
3

Use KD-initialized 
blocks from step B 

to finetune any 
network in the 

search space in 
15-50 epochs 
instead of 450

41 52 3
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Define reference architecture and search-space once
A diverse search space is essential for finding optimal architectures with higher accuracy

Select reference 
architecture
The largest model
in the search-space

Chop the NN
into blocks
Fix the STEM, HEAD,
# blocks, strides,
# channels at block-edge

Choose search space
Diverse factorized 
hierarchical search space, 
including variable kernel-
size, expansion-rate, depth,
# channels, cell-type,
activation, attention

STEM 1, s=2 2, s=2 3, s=2 4, s=1 5, s=2 HEAD
ch=32 ch=64 ch=96 ch=128 ch=196 ch=256

Conv
1x1

FCAvg

ch=1536

Conv
3x3s2

DW
Conv

ch=32

Kernel:
Expand:
Depth:
Attention:

3,5,7
2,3,4,6
1,2,3,4
SE, no SE

Activation:
Cell type:
Width scale:

ReLU/Swish
grouped, DW, …
0.5x, 1.0x

Choose diverse search space

Ch: channel; SE: Squeeze-and-Excitation
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Build accuracy predictor via BKD once
Low-cost hardware-agnostic training phase

Block library

Pretrain all blocks in search-
space through blockwise
knowledge distillation

Fast block training

Trivial parallelized training

Broad search space 

Block
pretrained
weights

Block
quality
metrics

Finetuned 
architectures

Architecture library

Quickly finetune a 
representative set
of architectures

Finetune sampled networks

Fast network training

Only 30-50 NN required

Accuracy predictor

Fit linear
regression
model

Regularized Ridge Regression

Accurate predictions

BKD: blockwise knowledge distillation
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Evolutionary search with real hardware measurements
Scenario-specific search allows users to select optimal architectures for real-life deployments

Quick turnaround time
Results in +/- 1 day using one measurement device

NSGA: Non-dominated Sorting Genetic Algorithm

Accurate scenario-specific search
Captures all intricacies of the hardware platform
and software — e.g. run-time version or devices

NSGA-II
sampling
algorithm

Target HW

Task 
acc predictor

Predicted task accuracy

Measured latency on device 

End-to-end 
model
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Quickly finetune predicted Pareto-optimal architectures
Finetune to reach full accuracy and complete hardware-aware optimization for on-device AI deployments

Soft distillation on teacher logits

Block
pretrained
weights

41 52 3

41 52 3

CE

Soft
CE

Ground-truth 
labels

BKD-reference network
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DONNA provides MnasNet-level diversity at 100x lower cost
*Training 1 model from scratch = 450 epochs

DONNA 
efficiently
finds optimal
models over
diverse 
scenarios
Cost of training
is a handful of
architectures*

Method Granularity Macro-diversity

Search-cost
1 scenario
[epochs]

Cost / scenario
4 scenarios 

[epochs]

Cost / scenario
∞ scenarios 

[epochs]

OFA Layer-level Fixed 1200+10×[25 — 75] 550 — 1050 250 — 750

DNA Layer-level Fixed 770+10×450 4700 4500

MNasNet Block-level Variable 40000+10×450 44500 44500

DONNA Block-level Variable 4000+10×50 1500 500

Good OK Not good
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20% - 40% Latency Reduction
*Training 1 model from scratch = 450 epochs

DONNA can be easily adapted to different tasks

Task Reference Model Reference 
model 

Accuracy

Donna 
Optimized

Model Accuracy

Donna Gain
(Latency 

Reduction)

Classification EfficientDet-B0 77.7% 77.1% 25%

Object Detection EfficientDet-D0 34.4 34.2 37%

Depth Estimation Monodepth + X-
distill

0.69 0.75 35%

Image Denoising MPRNet 39.4dB 39.2dB 45%

Latency measured on commercial devices AI accelerator



• Accurate depth estimation is key for 3D understanding
• Autonomous driving, AR/VR, image/video processing, robotics
• Recent years, learning-based methods have greatly advanced SOTA
• However, high-quality, dense GT depth annotations are costly to collect

Application on Depth Estimation

•Self-supervised monocular depth
◦ Utilizes geometric relationship across video frames
◦ Learns depth from unlabeled monocular videos
◦ However, SOTA models are computationally heavy

•Computation efficiency and low latency are 
critical
◦ Deployment on resource-constrained mobile platforms, 
e.g., headsets, smartphones

◦ Real-time performance crucial for practical applications

Input Image

Depth Estimation
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Depth estimation running on Snapdragon® powered smartphone

Real-time Depth Estimation

Showing efficiency improvement
with better accuracy

Baseline:
Monodepth2

Ours:
X-Distill+DONNA

Our solution has 
~40% higher FPS

Snapdragon is a product of  Qualcomm Technologies, Inc. and/or its subsidiaries.

• X-Distill (Self-supervision): 
Improves Accuracy
◦ Has significantly smaller estimation 

errors comparing to baseline

• X-Distill + DONNA: Real-time 
Performance
◦ Leads to significantly smaller model

and real-time inference
◦ Has considerably smaller estimation 

errors comparing to baseline

Evaluation based on KITTI dataset



Quantization
Taking floating point trained models to target for efficient 
fixed-point inference
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Quantizing AI models offers significant benefits

Power consumption

Significant reduction in 
energy for both computations 

and memory access

Silicon area

Integer math or less bits require 
less silicon area compared to 

floating point math and more bits

Mem access
energy (pJ)

Cache (64-bit)

8KB 10

32KB 20

1MB 100

DRAM
1300-
2600

Up to 4X energy 
reduction

Add energy (pJ)

INT8 FP32

0.03 0.9

30X energy 
reduction

Mult energy (pJ)

INT8 FP32

0.2 3.7

18.5X energy 
reduction

Memory usage

8-bit versus 32-bit weights 
and activations stored in 

memory

01010101 01010101 01010101 01010101

01010101

Add area (µm2)

INT8 FP32

36 4184

116X area reduction

Mult area (µm2)

INT8 FP32

282 7700

27X area reduction

Latency

With less memory access 
and simpler computations, 

latency can be reduced
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What is neural network quantization?

For any given trained neural network:

• Store weights in n bits

• Compute calculations in n bits

Quantization analogy
Similar to representing the pixels of an 
image with less bits 
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Challenge of Quantization
Quantization noise can reduce model accuracy

FP32

INT8 Baseline: 
Inaccurate 

segmentation
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Open-source projects to scale model-efficient AI to the masses

AIMET & 
AIMET Model Zoo
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Providing advanced model 
efficiency features and benefits

AIMET
Quantization
State-of-the-art INT8 and INT4 performance 
Post-training quantization methods, including Data-Free 
Quantization, Adaptive Rounding (AdaRound) & AutoQuant
Quantization-aware training (QAT)

Quantization simulation

Compression
Efficient tensor decomposition and removal of redundant channels in 
convolution layers

Spatial singular value decomposition (SVD)
Channel pruning

Visualization
Analysis tools for drawing insights for quantization and compression
Weight ranges

Per-layer compression sensitivity

Benefits

Lower 
power

Lower 
storage

Lower 
memory 
bandwidth

Higher 
performance

Maintains 
model 
accuracy

Simple 
ease of use
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AdaRound

INT8, Baseline (Nearest Rounding)

INT8, AdaRound

Configuration mAP

Floating point 82.20

Nearest Rounding –
8-bit weights, 

8-bit activations

49.85

AdaRound –
8-bit weights, 

8-bit activations

81.21

Object Detection

mAP: Mean Average Precision

Rounding-to-the-nearest is 
not optimal

12
8

-127

Round 
to nearest

?

• AdaRound optimizes the network weights in minutes
without model fine-tuning
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AutoQuant

• Different models require different PTQ 
techniques

• Need to make provide push-button 
solution to users that navigates different 
options and provides best answer

• AutoQuant: Blackbox, push-button PTQ
q Analyzes the model
q Applies the best sequence of PTQ 

features
q Returns the best possible accuracy 

model (withing PTQ constraints) 
together with analysis

• Making Post-Training Quantization (PTQ) Easy

Model

Analyze CLE

AdaRound

BN 
Fold Mix 

Precision
(optional)

Model with
best quantized 

accuracy

Analysis
Report
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Baseline quantization: Post-training quantization
using min-max based quantization grid
AIMET quantization: Model fine-tuned using
Quantization Aware Training in AIMET

FP32 INT8
(AIMET quantization)

INT8
(Baseline quantization)

Quantizatin using 
AIMET preserves 
accuracy
Visual difference in model
accuracy is telling between 
AIMET and baseline 
quantization methods

For DeepLabv3+
semantic segmentation,
AIMET quantization
maintains accuracy,
while baseline quantization 
method is inaccurate

Accurate 
segmentation

Inaccurate 
segmentation
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*: Comparison between FP32 model and INT8 model quantized with AIMET.
For further details, check out: https://github.com/quic/aimet-model-zoo/

ResNet-50
(v1)

Top-1 accuracy*

FP32 INT8
75.21% 74.96%

MobileNet-
v2-1.4

Top-1 accuracy*

FP32 INT8
75% 74.21%

EfficientNet
Lite

Top-1 accuracy*

FP32 INT8
74.93% 74.99%

SSD 
MobileNet-v2

mAP*

FP32 INT8
0.2469 0.2456

RetinaNet

mAP*

FP32 INT8
0.35 0.349

Pose 
estimation

mAP*

FP32 INT8
0.383 0.379

SRGAN

PSNR*

FP32 INT8
25.45 24.78

MobileNetV2

Top-1 accuracy*

FP32 INT8
7167% 71.14%

EfficientNet-
lite0

Top-1 accuracy*

FP32 INT8
75.42% 74.44%

DeepLabV3+

mIoU*

FP32 INT8
72.62% 72.22%

MobileNetV2-
SSD-Lite

mAP*

FP32 INT8
68.7% 68.6%

Pose 
estimation

mAP*

FP32 INT8
0.364 0.359

SRGAN

PSNR

FP32 INT8
25.51 25.5

DeepSpeech2

WER*

FP32 INT8
9.92% 10.22%

AIMET Model Zoo includes popular quantized AI models
Accuracy is maintained for INT8 models — less than 1% loss* 

26

<1%
Loss in

accuracy*
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Join our open-source projects

AIMET
State-of-the-art quantization and compression techniques

github.com/quic/aimet

AIMET Model Zoo
Accurate pre-trained 8-bit quantized models

github.com/quic/aimet-model-zoo
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Automating deep neural network 
design and deployment is crucial for 
on-device machine learning

We are conducting leading research 
and development in AI model 
efficiency while maintaining accuracy

Our open-source projects, based on 
this leading research, are making it 
possible for the industry to adopt 
efficient AI models at scale
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