tinyML. Summit

March 28-30, 2022 | San Francisco Bay Area

e

www.tinyML.org

Google

Model Optimization

with QKeras’ Quantization-Aware Training and Vizier’s
Automatic Neural Architecture Search

Daniele Moro (danielemoro@google.com)

Google ASML Team and the Google Vizier Team

Quantization makes models tiny

~16x reduction in energy to
go from float32 to int8

~1024x reduction in energy
to go from float32 to binary

Leads to significant
reduction in latency and
memory usage as well

Google

ADD Energy (fJ) | MUL Energy (1)) MAC

45nm 7nm | 45nm Tnm | CPU64 ACE
float32 900 380 3700 1310 1 1024
float16 400 160 1100 340 1 256
bfloat16 - 110 - 210 - 256
int32 100 30 3100 1480 - 1024
int8 30 7 200 70 1/8 64
int4 - - - - 1/16 16
int2 - - - - 1/32 4
binary - - - - 1/64 1

Energy numbers collected from Google TPU

hardware and modelled using PokeBNN's
ACE metric

https://arxiv.org/pdf/2112.00133.pdf

How can we quantize models?

Keras: Deep Learning for humans Keras is great for easily building

. ML models
.. but it doesn’t support

This repository hosts the development of the Keras library. Read the documentation at keras.io.

quantizing these models

About Keras

Keras is a deep learning API written in Python, running on top of the machine learning platform TensorFlow.
It was developed with a focus on enabling fast experimentation. Being able to go from idea to result as fast
as possible is key to doing good research.

Keras is:

« Simple -- but not simplistic. Keras reduces developer cognitive load to free you to focus on the parts of
the problem that really matter.

« Flexible -- Keras adopts the principle of progressive disclosure of complexity: simple workflows should
be quick and easy, while arbitrarily advanced workflows should be possible via a clear path that builds
upon what you've already learned.

« Powerful -- Keras provides industry-strength performance and scalability: it is used by organizations
and companies including NASA, YouTube, or Waymo.

Google

QKeras

A quantization
extension to Keras
that provides

drop-in replacements
for quantizing Keras
layers

Google

@ google / gkeras pubic & Unwatch ~

<> Code () Issues 11 1 Pull requests 5 () Discussions (® Actions [Projects 00 Wiki

W Unstar 326 % Fork 69

© Security |~ Insights o

¥ master ~ ¥ 3branches © 6tags Go to file Add file - About i

gkeras-robot and Copybara-Service Internal change v 7ba2ch2 17 days ago () 369 commits

:= README.md Va

QKeras

github.com/google/gkeras
Introduction

QKeras is a quantization extension to Keras that provides drop-in replacement for some of the Keras layers,
especially the ones that creates parameters and activation layers, and perform arithmetic operations, so that
we can quickly create a deep quantized version of Keras network.

According to Tensorflow documentation, Keras is a high-level API to build and train deep learning models. It's
used for fast prototyping, advanced research, and production, with three key advantages:

¢ User friendly

Keras has a simple, consistent interface optimized for common use cases. It provides clear and actionable
feedback for user errors.

* Modular and composable
Keras models are made by connecting configurable building blocks together, with few restrictions.
¢ Easy to extend

Write custom building blocks to express new ideas for research. Create new layers, loss functions, and
develop state-of-the-art models.

QKeras is being designed to extend the functionality of Keras using Keras' design principle, i.e. being user
friendly, modular and extensible, adding to it being "minimally intrusive” of Keras native functionality.

In order to successfully quantize a model, users need to replace variable creating layers (Dense, Conv2D,
etc) by their counterparts (QDense, QConv2D, etc), and any layers that perform math operations need to be
quantized afterwards.

QKeras: a quantization deep
learning library for Tensorflow Keras

machine-learning fpga

deep-learning tensorflow

accelerator keras quantization
hardware-acceleration

fpga-accelerator
quantized-neural-networks asic-design

quantized-networks

0 Readme

&8 Apache-2.0 License

Releases 6

© QKeras 0.9.0 (Latest)
on Feb 19

+ 5 releases

Packages

No packages published
Publish your first package

Used by 1

: @Ali-Homsi / githubrepo

Contributors 16
9 ML
Aw ST

QKeras
Works with Keras

Quantization-
Aware Training

Heterogenous Quantization

Any-number bit width
quantization

Layer-based Authoring API
Variety of quantizers Most
BN folding / Quantized BN

Training-Aware Activation
Quantizer Calibration

Power-Of-Two Quantization

RNN / LSTM quantization

Built-in Energy Estimation
Native QAT X

Direct TFLite Support X

TFLite's
Post-Training
Quantization

Few

TF M.O.T.
Keras Functional API

Few

AQT
Accurate Quantized
Training

X

Few

LARQ

X| X X| X| X

Simulated Quantization

T float32

[Actlvatlon

loat32

f
float32
Bias

float32

[Conv2D
flantﬁ

Inputs Weights

Google

Bias
Quantizer

Tfixed16

(

Activation
Quantizer

T float32

[Activation]

float32

float32

Bias

Conv2D

ﬂxedy\xed8

Inputs

Weight
Quantlzer

l float32

f

Weights

https://arxiv.org/pdf/1712.05877.pdf

fixed16

Quantization Aware Training (Acﬁ

After adding the ‘“ floats2

quantization functions, we

need to train the quantized
model so that the weights l float32
can adjust.

0at32

) J
. N : 2
Without quantization-aware Blas [%nv %]
training, model accuracy is
far lower fixed16 fideds

Quz | tizer Backwards
' Propagation

. \l float32
Weight
Inputs [Quantizer

Weights

Google T

https://arxiv.org/pdf/1712.05877.pdf

4 fixed16

.
QKeras layers wrap Activation QActivation
Keras layers

Layers Implemented in QKeras

float32

* QDense ACtivation
* QConviD L J
¢ QConv2D ‘

* QDepthwiseConv2D (ﬂ Xed12

* QSeparableConv1D (depthwise + pointwise convolution, without quantizing the activation Bias

values after the depthwise step) .
Quantizer

~
QConv2D

QSeparableConv2D (depthwise + pointwise convolution, without quantizing the activation
values after the depthwise step)

float32

QMobileNetSeparableConv2D (extended from MobileNet SeparableConv2D
implementation, quantizes the activation values after the depthwise step)

float32

QConv2DTranspose

Bias Conv2D

QActivation

QAdaptiveActivation

QAveragePooling2D (in fact, an AveragePooling2D stacked with a QActivation layer for

quantization of the result) f d_|6 f d8
QBatchNormalization (is still in its experimental stage, as we have not seen the need to

use this yet due to the normalization and regularization effects of stochastic activation

functions.)

¢ QOctaveConv2D Weight ﬂ Oa t32 .
« QSimpleRNN, QSimpleRNNCell InPUts Quantizer Welghts

« QLSTM, QLSTMCell \ ‘

« QGRU, QGRUCell

« QBidirectional

Quantizers

Divide a continuous space
into discrete bins

Need to determine:
- Scale
- Number of bins

Math demo

Google

For each layer, quantization is parameterized by the
number of quantization levels and clamping range, and is
performed by applying point-wise the quantization function
q defined as follows:

clamp(r; a, b) := min (max(x, a), b)

b—a
b =
s(a,b,n) ——3
1 . -
glrsa, b, n) = r amj)((;:,:,s)) a_‘ s(a,b,n) + a,

(12)

where 7 is a real-valued number to be quantized, [a; b] is the
quantization range, n is the number of quantization levels,
and |-] denotes rounding to the nearest integer. n is fixed
for all layers in our experiments, e.g. n = 28 = 256 for 8
bit quantization.

https://arxiv.org/pdf/1712.05877.pdf
https://arxiv.org/pdf/1712.05877.pdf
https://www.desmos.com/calculator/zqggxorrzg
https://www.desmos.com/calculator/zqggxorrzg

Quantizer Scale

No Scale Auto Scale Power-of-two Scale

s =max(x) / (n-1) = 0.047619 s =1/ (2"bits) = 0.0625

q(x) = int(x/s) *s q(x) = int(x>>log2(s)) <<log2(s)

q(x) = int(x)

L X ‘

ol

ol2 ola ole olg 1 0 = o2 | s [| [©oe | [[o8 0 ol2 0l4 ole ols

quantized_bits

10.0 1
75 1
5.0 1
251
0.0 1

—2.5

—5.0

—7.5

-10.0 1

~—— Floating point value
—— gkeras.quantized_bits(4, 1, alpha=auto) |

-100 -75 -50 -25 00 25 5.0 75 100

10.0 4
751
5.0 1
251
0.0 1

-2.5 1

—5.0

—7.5

-10.0 1

—— Floating point value
— gkeras.quantized_bits(4, 1, alpha=auto_po2)

Google

T T T T T

T T T T
-100 -75 -50 -25 00 25 5.0 75 100

443 class [iANEIZEdNBEES (BaseQuantizer): # pylint: disable=invalid-name

444 """Quantizes the number to a number of bits.

445

446 In general, we want to use a quantization function like:

447

448 a = (pow(2,bits) - 1 - 0) / (max(x) - min(x))

449 b = -min(x) * a

450

479 Attributes:

480 bits: number of bits to perform quantization.

481 integer: number of bits to the left of the decimal point.

482 symmetric: if true, we will have the same number of values for positive
483 and negative numbers.

484 alpha: a tensor or None, the scaling factor per channel.

485 If None, the scaling factor is 1 for all channels.

486 keep_negative: if true, we do not clip negative numbers.

487 use_stochastic_rounding: if true, we perform stochastic rounding.

488 scale_axis: which axis to calculate scale from

489 gnoise_factor: float. a scalar from © to 1 that represents the level of
490 quantization noise to add. This controls the amount of the quantization
491 noise to add to the outputs by changing the weighted sum of

492 (1 - gnoise_factor)*unquantized_x + gnoise_factor*quantized_x.

493 var_name: String or None. A variable name shared between the tf.variables
494 created in the build function. If None, it is generated automatically.
495 use_ste: Bool. Whether to use "straight-through estimator" (STE) method or
496 not.

497 use_variables: Bool. Whether to make the quantizer variables to be dynamic
498 tf.variables or not.

499

500 Returns:

501 Function that computes fixed-point quantization with bits.

502 LA

quantized_po2

1928 (BaseQuantizer): # pylint: disable=invalid-name
1929 """Quantizes to the closest power of 2.
1930
. . . 1931 Attributes:
Non_unlform quantlzatlon preserves 1932 bits: An integer, the bits allocated for the exponent, its sign and the sign
both precision AND range 1033 of x.
1934 max_value: An float or None. If None, no max_value is specified.
1935 Otherwise, the maximum value of quantized_po2 <= max_value
1936 use_stochastic_rounding: A boolean, default is False, if True, it uses
100 H e Floating| point value 1937 stochastic rounding and forces the mean of x to be x statstically.
25 4= gkeras quantized_po2(4) 1938 quadratic_approximation: A boolean, default is False if True, it forces the
. 1939 exponent to be even number that closted to x.
50 4 1940 log2_rounding: A string, log2 rounding mode. "rnd" and "floor" currently
1941 supported, corresponding to tf.round and tf.floor respectively.
251 1942 gnoise_factor: float. a scalar from 0 to 1 that represents the level of
0.0 1 1943 quantization noise to add. This controls the amount of the quantization
1944 noise to add to the outputs by changing the weighted sum of
-2.5 1 1945 (1 - gnoise_factor)*unquantized_x + gnoise_factor*quantized_x.
50 - 1946 var_name: String or None. A variable name shared between the tf.variables
1947 created in the build function. If None, it is generated automatically.
=71.5 11 1 1 T i 1 1 T 1948 use_ste: Bool. Whether to use "straight-through estimator" (STE) method or
1949 not.
200 . . . , , , , , , 1950 use_variables: Bool. Whether to make the quantizer variables to be dynamic
-100 -75 -50 -25 00 25 5.0 75 10.0 1951 tf.variables or not.
1952 W

Google

QKeras' Many Quantizers and Layers

Layer types

Activation functions

A=
L o

Batch normalization

Google

Dense (Fully Connected)
ConvlD, Conv2D
Conv2DTranspose

2-way Separable Conv2D
(depthwise + pointwise)
3-way Separable Conv2D
(IXN + Nx1 + pointwise)
MaxPooling, AveragePooling
GlobalAveragePooling
OctaveConv2D
SimpleRNN, LSTM, GRU
BiDirectional

Smooth/hard/binary sigmoid
Smooth/hard/binary tanh
RelLu

Softmax

ulaw

Hard Swish (h-swish)

Separate
Folded

Quantization functions

Heterogeneous quantizer
configuration

Each listed area can have an
independent quantizer
configuration

Arithmetic precision
Independent for each
quantizer

Quantized bits
Bernoulli

Binary

Stochastic Binary
Ternary
Stochastic Ternary
Power-of-2
Quantized Relu
Quantized ulaw
Quantized h-swish

Per layer:
Weights
Biases
Activations
Scales

Integer 1-32 bits
Fixed point 2-32 bits

Custom Quantizers

You can make your own custom quantizers:

1. Create a class in quantizers.py
2. Make the class extend BaseQuantizer

3. Create an__init__ method to initialize
state (such as number of bits)

4, Createa__call_ method that takes a
floating-point inputs and returns a
quantized output

5. Implement max and min methods of
your quantizer

6. Implement from_config and get_config
methods so that your quantizer is
correctly saved and loaded when the
model is saved and loaded

Google

ss simple_quantizer(gkeras.quantizers.BaseQuantizer):

def __init__ (self, alpha):

self.alpha = tf.constant(alpha, dtype=tf.double)
self.bits = 2

def _ call (self, x):

return tf.where(tf.logical_and(
tf.greater(x, -self.alpha),
tf.less(x, self.alpha)),

tf.zeros(x.shape, dtype=tf.float64),
tf.multiply(tf.sign(x), self.alpha))

def max(self):

return self.alpha

def min(self):

return -self.alpha

ef from_config(cls, config):

return cls(**config)

def get_config(self):

return {"alpha": self.alpha}

10.0 1 — Real value
751 simple_quantizer{4)
5.0 1 //////////
251 /
0.0 1 T
5.0 { '
s /
-10.0 1

-100 -75 -50 -25 00 25 5.0 75 100

Keras Example

x = x_in = Input((28,28,1), name="input")

x = Conv2D(filters=32, kernel _size=(2, 2), strides=(2,2))(x)

x = Activation("relu")(x)

x = Conv2D(filters=64, kernel size=(3, 3), strides=(2,2))(x)

x = Activation("relu")(x)

x = Flatten()(x)
X = Dense(10)(x)

x = Activation("softmax")(x)

QKeras Heterogeneous Quantization Example

X = x_in = Input((28,28,1), name="input")
x = QActivation("quantized bits(8,1)")(x)
x = QConv2D(filters=32, kernel size=(2,2), strides=(2,2),
kernel quantizer=quantized bits(
bits=8, alpha="auto_po2", symmetric=True, keep_negative=True),
bias_quantizer=quantized_bits(
bits=12, integer=4, symmetric=True, keep_negative=True))(x)
x = QActivation("quantized relu(bits=16, integer=4)")(x)
X = QConv2D(filters=64, kernel size=(3,3), strides=(2,2),
kernel quantizer=quantized bits(
bits=4, alpha="auto_po2", symmetric=True, keep_ negative=True),
bias_quantizer=quantized_bits(
bits=6, integer=2, symmetric=True, keep_negative=True))(x)
x = QActivation("quantized_relu(bits=8, integer=2)")(x)
x = Flatten()(x)
X = QDense(units=10, kernel quantizer=quantized_bits(
bits=4, alpha="auto_po2", symmetric=True, keep_negative=True),
bias_quantizer=quantized bits(
bits=6, integer=2, symmetric=True, keep_negative=True))(x)
x = Activation("softmax", name="softmax")(x)

QKeras Heterogeneous Quantization Example

X = x_in = Input((28,28,1), name="input") 1. Change Keras
x = QActivation("quantized bits(8,1)")(x) layers to the
X = QConv2D(filters=32, kernel size=(2,2), strides=(2,2), corresponding
kernel quantizer=quantized_bits(QKeras layers
bits=8, alpha="auto_po2", symmetric=True, keep_negative=True),
bias_quantizer=quantized_bits(
bits=12, integer=4, symmetric=True, keep_negative=True))(x)
x = QActivation("quantized relu(bits=16, integer=4)")(x)
X = QConv2D(filters=64, kernel size=(3,3), strides=(2,2),
kernel quantizer=quantized bits(
bits=4, alpha="auto_po2", symmetric=True, keep_ negative=True),
bias_quantizer=quantized_bits(
bits=6, integer=2, symmetric=True, keep_negative=True))(x)
x = QActivation("quantized_relu(bits=8, integer=2)")(x)
x = Flatten()(x)
X = QDense(units=10, kernel _quantizer=quantized_bits(
bits=4, alpha="auto_po2", symmetric=True, keep_negative=True),
bias_quantizer=quantized bits(
bits=6, integer=2, symmetric=True, keep_negative=True))(x)
x = Activation("softmax", name="softmax")(x)

QKeras Heterogeneous Quantization

X = x_in = Input((28,28,1), name="input")
x = QActivation("quantized bits(8,1)")(x)

X = QConv2D(filters=32, kernel size=(2,2), strides=(2,2),
kernel quantizer=quantized_bits(
bits=8, alpha="auto_po2", symmetric=True, keep_negative=True),
bias_quantizer=quantized_bits(
bits=12, integer=4, symmetric=True, keep_negative=True))(x)
x = QActivation("quantized relu(bits=16, integer=4)")(x)

x = QConv2D(filters=64, kernel_size=(3,3), strides=(2,2),
kernel quantizer=quantized bits(
bits=4, alpha="auto po2", symmetric=True, keep negative=True),
bias_quantizer=quantized_bits(
bits=6, integer=2, symmetric=True, keep_negative=True))(x)
x = QActivation("quantized_relu(bits=8, integer=2)")(x)

x = Flatten()(x)
x = QDense(units=10, kernel_quantizer=quantized_bits(
bits=4, alpha="auto_po2", symmetric=True, keep_negative=True),
bias_quantizer=quantized bits(
bits=6, integer=2, symmetric=True, keep_negative=True))(x)
x = Activation("softmax", name="softmax")(x)

Example

1.

2.

Change Keras
layers to the
corresponding
QKeras layers

Add weight and
bias quantizers

QKeras Heterogeneous Quantization Example

X = x_in = Input((28,28,1), name="input") 1. Change Keras
X = QActivation("quantized bits(8,1)")(x) layers to the
X = QConv2D(filters=32, kernel size=(2,2), strides=(2,2), corresponding
kernel quantizer=quantized bits(QKeras layers
bits=8, alpha="auto_po2", symmetric=True, keep_negative=True),
bias_quantizer=quantized_bits(2. /\dcivveigkﬂ:arwd
bits=12, integer=4, symmetric=True, keep_negative=True))(x) bias quantizers
X = QActivation("quantized relu(bits=16, integer=4)")(x)
3. Quantize the
X = QConv2D(filters=64, kernel_size=(3,3), strides=(2,2), activations
kernel_quantizer=quantized_bits(
bits=4, alpha="auto po2", symmetric=True, keep negative=True),
bias_quantizer=quantized_bits(
bits=6, integer=2, symmetric=True, keep_negative=True))(x)
x = QActivation("quantized_relu(bits=8, integer=2)")(x)
x = Flatten()(x)
x = QDense(units=10, kernel_quantizer=quantized_bits(
bits=4, alpha="auto_po2", symmetric=True, keep_negative=True),
bias_quantizer=quantized bits(
bits=6, integer=2, symmetric=True, keep_negative=True))(x)
x = Activation("softmax", name="softmax")(x)

Keras to QKeras

Model: "model 4"

Layer (type)

output Shape

Param #

input (InputLayer)

conv2d (Conv2D)
activation_1 (Activation)
conv2d_1 (Conv2D)
activation_2 (Activation)
flatten_5 (Flatten)

dense (Dense)

activation_3 (Activation)

[(None, 28, 28, 1)]
(None, 14, 14, 32)
(None, 14, 14, 32)
(None,
(None,
(None,
(None,

(None,

(¢]

Total params: 41,706
Trainable params: 41,706
Non-trainable params: ©

Model: "model 3"

Layer (type)

output Shape

input (InputLayer)
g_activation_16 (QActivation)
g_conv2d_6 (QConv2D)
g_activation_17 (QActivation)
g_conv2d_7 (QConv2D)
g_activation_18 (QActivation)
flatten_4 (Flatten)

q_dense_2 (QDense)

activation (Activation)

[(None, 28, 28, 1)]
(None, 28, 28, 1)
(None, 14, 14, 32)
(None, 14, 14, 32)
(None, 6, 6, 64)
(None, 6, 6, 64)
(None, 2304)

(None, 10)

(None, 10)

Total params: 41,706
Trainable params: 41,706
Non-trainable params: ©

Number of operations in model:
g_conv2d_6
g_conv2d_7
g_dense_2

Number of operation types in model:
smult_4_16 s
smult_4_8
smult_8_8

wWeight profiling:
g_conv2d_6_weights
g_conv2d_6_bias
g_conv2d_7_weights
g_conv2d_7_bias
g_dense_2_weights
g_dense_2_bias

Total Bits

weight sparsity:
quantizing model
g_conv2d_6
q_conv2d_7
g_dense_2

Total Sparsity

25088 (smult_8_8)
663552 (smult_4_16)
23040 (smult_4_8)

663552
23040
25088

128 (8-bit unit)
32 (12-bit unit)
18432 (4-bit unit)

: 64 (6-bit unit)

23040 (4-bit unit)
10 (6-bit unit)

Folded Batch Normalization

output

output

Batch normalization layers are important for
modern deep neural networks

Problem: Batch normalization includes several
operations that are expensive to run on
optimized hardware, such as high-precision
division

Solution: Fold the batch normalization

operations into normal quantized convolutional
layers. We can do this automatically with the e e memsion: A

. input
fu n Ct I o n C—on vert tg fo——_L ded mOde L Figure C.8: Convolutional layer with batch normalization:

training graph, folded and quantized

Google

https://github.com/google/qkeras/blob/master/qkeras/utils.py#L280
https://arxiv.org/pdf/1712.05877.pdf

QAdaptiveActivation

Problem: We can't find the scale of activation
quantizers because the data distribution
keeps changing every batch

Solution: find the exponential moving average
of the data distribution so that we always have
a good scale for the activation quantizers.

Google

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229

©

231
232
233
234

class QAdaptiveActivation(Layer, PrunablelLayer)
"""[EXPERIMENTAL] Implements an adaptive quantized activation layer using EMA.

This layer calculates an exponential moving average of min and max of the
activation values to automatically determine the scale (integer bits) of
the quantizer used in this layer.

win

def init__ (self,
activation,
total_bits,
current_step=None,
symmetric=True,
quantization_delay=0,
ema_freeze_delay=None,
ema_decay=0.9999
per_channel=False,
po2_rounding=False,
relu_neg_slope=0.0,
relu_upper_bound=None,
**kwargs):

"""Initializes this QAdaptiveActivation layer.

Args:

activation: Str. The activation quantizer type to use for this activation

layer, such as 'quantized_relu'. Should be a string with no params.
total_bits: Int. The total bits that can be used by the quantizer
current_step: tf.variable specifying the current step in training.

You can find this by passing model.optimizer.iterations

(see tf.keras.optimizers.Optimizer.iterations). If set to None, the

layer will attempt to estimate the current step itself, but please note

that this number may not always match the optimizer step.

symmetric: Bool. If to enforce symmetry about the origin in the quantized

bit representation of the value. When using linear activation, this
should be True for best results.

quantization_delay: Int. How many training steps to wait until quantizing

the activation values.
ema_freeze_delay: Int. Steps to wait until stopping the update of the
exponential moving average values. Set to None for an infinite delay.

ema_decay: Float. The decay value used for exponential moving average (see

tf.keras.backend.moving_average_update)

2o ne SLERSINAN B O SRR S ST e I S Lt SRS SRR Do St e SR ey b

QTools

Purpose:

e To assist hardware implementation of the quantized model and model size estimation;
e Automatically generate the data type map for weights, bias, multiplier, adder, etc. of each

layer.
e Data type map includes operation type, variable size, quantizer type and bits, etc.

Input: a given quantized model; a list of input quantizers for the model

Output: json file that list the data type map of each layer (stored in
gtools_instance._output_dict)

Google

QTools Example

input_quantizer_list = [quantizers.quantized_bits(8, @, 1)]
x = x_in = keras.layers.Input((784,), name="input") reference_internal = "int8"
x = keras.layers.Dense(300, name="d@")(x) reference_accumulator = "int32"
x = keras.layers.Activation("relu", name="d@_act")(x)
x = QDense(108, kernel_quantizer=quantizers.quantized_po2(4), # generate QTools object which contains model data type map in json format
bias_quantizer=quantizers.quantized_po2(4), q = run_qtools.QTools
name="d1")(x) _/ in_r;odel,
X = QActivation("quantized_relu(4,0)", name="d1_qr4")(x) # energy calculation using a given process

x = QDense(
10, kernel_quantizer=quantizers.quantized_po2(4),
bias_quantizer=quantizers.quantized_po2(4),
name="d2") (x)

x = keras.layers.Activation("softmax", name="softmax")(x)

process="horowitz",

quantizers for model inputs
source_quantizers=input_quantizer_list,

training or inference with a pre-trained model
is_inference=False,

path to pre-trained model weights

weights_path=None,

keras_quantizer to quantize weight/bias in non-quantized keras layers:
keras_quantizer=reference_internal,

keras_accumulator to quantize MAC in un-quantized keras layers
keras_accumulator=reference_accumulator,

calculating baseline energy or not

for_reference=False

return keras.Model(inputs=[x_in], outputs=[x])

print data type map
q.qtools_stats_print()

Google

"source_quantizers": [

{
"quantizer_ type": "quantized bits",
*hits": 8,
*int bits™: @,
"is _signed": true
}
1.
"de": {

"layer_type": "Dense",
"input_quantizer list": [

{
"quantizer type": "quantized bits",
"bits": 8,
*int bits": e,
"is signed": true
}
1,
"weight_quantizer": {
"quantizer type": "quantized bits",
*bits": B,

*int bits”: 8,
"is signed": true,
"shape": [
784,
300
1
}.
"bias_quantizer": {
"quantizer_type": "quantized bits",
“bits": 8,
"int _bits": o,
"is signed": true,
"shape": 300
)
"multiplier”: {
"quantizer type": "quantized bits",
“bits”: 32.
"int bits": 1@,
"is _signed": true,
"op_type": "mul"
}e
"accumulator”: {
"quantizer_ type": "quantized bits",
*bits": 32,

\~I\J\JEJ"5

"accumulator": {

"quantizer type": "quantized bits",

*bits®: 32,

*int bits": 10;
"is signed": true,
"op_type": "add"

)

"output quantizer": {
"quantizer type": "quantized bits",
*hits": 32;

"3int bits"™: 160,
"is signed": true,

"quantizer type": "quantized bits",

"shape": [
-1,
300
]
1,
"operation_count": 235200
}.
"de_act": {
"layer type": "Activation",
"input_quantizer list": [
"bits™: 32,
“int bits®: 16,
"is signed": true
}
1.
"output quantizer": {
"quantizer type": "quantized bits",
*bits": 8,
*int bits®: 8;
"is_signed": true,
"shape": [
.1'
300
]
1,
"operation_count": 300
1
“di*: {

"layer type": "QDense",

"d2*: {

"layer_type": "QDense",
"input_quantizer list": [

"quantizer type": "quantized relu",

"bits": 4,
"int _bits": @,
"is signed": ©
}
1.

"weight quantizer": {

"quantizer type": "quantized po2", <

*biis": 4,
is signed: 1,
"max_value": -1,
"shape": [
100,
10
]
}.
"bias_quantizer": {
"quantizer_ type": "quantized po2",
"bits®: 4,
"is signed": 1,
"max_value": -1,
"shape": 10
}.
"multiplier": {
"quantizer type": "quantized bits",
“hits": 12,
=int bits": 3,
"is signed": 1,
“op _type®: “shifter®
}.
"accumulator": {
"quantizer type": "quantized bits",
*biis®: 19,
"int bits": 10,
is signed: 1,
"op_type": "add"
)
"output_quantizer": {
"quantizer_type": "quantized bits",
"hits": 19,

"int_bits": 10,

QEnergy - Computing Energy Estimate

energy(bits) = a bits? + b bits + ¢

actual_energy(layer) = k1 * energy_estimate(layer) + k2

energy_estimate(layer) = energy(input) + energy(parameter) + energy(op) + energy(output)

Google

a b c
fixed_point_add 0.0031 0 pJ/bit inputs (x)
- - - fp m-quant e-quant -1,0,+1 -1,+1 0,1
fixed_point_multiply 0.0030 0.0010 0 pJ/bit o o o o 2/) 20) &)
FP16 add 0.4 pJ/bit m-quant fp *(m)/+(m’) | <<>>/+Hm’) | ?/+(m’) ?/+-(m’) &
FP16 multiply 11 pJ/bit weights (w) | e-quant fp <<>>/+(m’) | +/+(m’) ?/+-(m’) ?/+-(m’) &/+(m’)
-1,0,+1 ?/+-(fp) ?/+-(m’) ?/+-(m’) ?/+-1 ?/+-1 &/+1
FRa2mdd o:s pJ/bit 1,41 elip) |) |) [2 Af+-1 &/+1
FP32 multiply 3.7 pJ/bit 01 &(fp) & &/+(m’) &/+1 &/+1 &/+1
SRAM access 0.02455/64 | -0.2656/64 | 0.8661/64 pJ/bit energy(*, bitS) = ﬁxed_point_multiply(bits)
DRAM access 20.3125 0 pJ/bit energy(+, bits) = fixed_point_add(bits)

energy(?, bits) = alpha(?) * fixed_point_add(bits)

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6757323
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6757323

Design Space Options

All of these parameters influence the tradeoff between accuracy and cost
1. Number of bits / quantization levels for each weight / bias / activation quantizer
Scale for each weight / bias / activation quantizer
Quantization function for every quantizer
Number of channels for every layer
Number of layers

Connections between the layers

N o bk WN

Layer types (filter sizes, strides, dense versus conv, etc)

Google

FInding the Pareto Frontier

A Pareto Frontier
To find the right tradeoff between
model accuracy and cost, we can build
a Pareto Frontier of optimal models.

We can then use the model with
highest possible accuracy for any cost
budget.

Model Accuracy

The model cost can be a theoretical
energy number, and/or a trained cost
model that predicts power & latency on
a target HW platform. Model Cost

Google

How do we find the Pareto Frontier?

Google

Google Vizier: A Service for Black-Box Optimization

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, D. Sculley
{dgg, bsolnik, smoitra, gpk, karro, dsculley}@google.com

Google Research
Pittsburgh, PA, USA

ABSTRACT

Any sufficiently complex system acts as a black box when
it becomes easier to experiment with than to understand.
Hence, black-box optimization has become increasingly im-
portant as systems have become more complex. In this paper
we describe Google Vizier, a Google-internal service for per-
forming black-box optimization that has become the de facto
parameter tuning engine at Google. Google Vizier is used
to optimize many of our machine learning models and other
systems, and also provides core capabilities to Google’s Cloud
Machine Learning HyperTune subsystem. We discuss our re-
quirements, infrastructure design, underlying algorithms, and
advanced features such as transfer learning and automated
early stopping that the service provides.

KEYWORDS
Black-Box Optimization, Bayesian Optimization, Gaussian
Processes, Hyperparameters, Transfer Learning, Automated

Stopping

-1 TATIMTM I YTIYNT TOAIIMMTOOYCNT

In this paper we discuss a state-of-the-art system for black—
box optimization developed within Google, called Google
Vizier, named after a high official who offers advice to rulers.
It is a service for black-box optimization that supports several
advanced algorithms. The system has a convenient Remote
Procedure Call (RPC) interface, along with a dashboard and
analysis tools. Google Vizier is a research project, parts of
which supply core capabilities to our Cloud Machine Learning
HyperTune' subsystem. We discuss the architecture of the
system, design choices, and some of the algorithms used.

1.1 Related Work
Black—box optimization makes minimal assumptions about
the problem under consideration, and thus is broadly appli-
cable across many domains and has been studied in multiple
scholarly fields under names including Bayesian Optimiza-
tion [2, 25, 26], Derivative—free optimization 7, 24], Sequen-
tial Experimental Design [5], and assorted variants of the
multiarmed bandit problem [13, 20, 29].

Several classes of algorithms have been proposed for the
problem. The simplest of these are non-adaptive procedures

29

How Vizier Works

Gooyie

Dangling
Work Finder

Suggestion
Workers

AutomatedStopping
Workers

—

Persistent
Database

Automated Stopping Service Suggestion Service

’ Vizier API

Evaluation
Workers

Figure 1: Architecture of Vizier service: Main compo-
nents are (1) Dangling work finder (restarts work lost
to preemptions) (2) Persistent Database holding the cur-
rent state of all Studies (3) Suggestion Service (creates
new Trials), (4) Early Stopping Service (helps terminate
a Trial early) (5) Vizier API (JSON, validation, multi-
plexing) (6) Evaluation workers (provided and owned by
the user).

Trains

Worker 1

guantization schema1

~

a model with

(.

Dynamically create

Worker 2

Trains a model with
guantization schema 2

(.

~

~

Worker 3

Trains a model with
guantization schema 3

workers to search
many configurations
in parallel

/" '

Worker 4

Trains a model with
quantization schema <4

_

30

Al Platform Vizier
Al Platform Vizier documentation
Product overview Al Platform > Al Platform Vizier > Documentation Was this helpful? 7 GJ

All Al Platform documentation

Optimizing multiple objectives « Send feedback
Getting started

Introduction to Al Platform On this page v

Vizier overview Objective

Getting started: Optimizing a machine Costs

learning model
PIP install packages and dependencies
Getting started: Optimizing multiple y
objectives Set up your Google Cloud project

Using Al Platform Vizier Authenticate your Google Cloud account

Monitoring and security
Viewing audit logs A CO

Run this tutorial as a notebook in Colab [4 OVieW the notebook on GitHub [4
Access control

This tutorial demonstrates Al Platform Optimizer multi-objective optimization.

Objective
The goal is to minimize the objective metric: y1 = r*sin(theta)
and simultaneously maximize the objective metric: y2 = r*cos(theta)
that you will evaluate over the parameter space:
« r in[0,1],

Goc « theta in [0, pi/2]

Al Platform Vizier

Al Platform Vizier documentation

Product overview Al Platform > Al Platform Vizier > Documentation Was this helpful? 7 GJ

All Al Platform documentation 3 . 5 : .
Optimizing multiple objectives & Send feedback

Getting started

Introduction to Al Platform

Pareto Frontier

Vizier overview A

Getting started: Optimizing a machine
learning model

Getting started: Optimizing multiple
objectives

Using Al Platform Vizier

Monitoring and security
Viewing audit logs A

Access control

Model Accuracy

Model Cost

Goc L

Vizier Search Algorithms

Search algorithms

If you do not specify an algorithm, Vertex Al Vizier uses the default algorithm. The default
algorithm applies Bayesian optimization to arrive at the optimal solution with a more effective
search over the parameter space.

The following values are available:

e ALGORITHM_UNSPECIFIED : Results in the same behavior as when you don't specify a
search algorithm. Vertex Al Vizier uses a default algorithm, which applies Bayesian
optimization to search the space of possible values, resulting in the most effective
technique for your set of parameters.

e GRID_SEARCH : A simple grid search within the feasible space. This option is useful if you
want to specify a quantity of trials that is greater than the number of points in the
feasible space. In such cases, if you do not specify a grid search, the default algorithm
can generate duplicate suggestions. To use grid search, all parameters must be of type

INTEGER, CATEGORICAL , or DISCRETE .

e RANDOM_SEARCH : A simple random search within the feasible space.

Google

ParBayesianOptimization in Action (Round 1)

-
[+
=
£ 066
S
=
<
'8
3
3=
(=}
=3
< 033
@
(=3
o
w

a \V

e o
w @
=2}

o
g
3
=2
53
82
08
@
a
a
5

Trees in Forest (K)

https://en.wikipedia.org/wiki/Bayesian_optimization

https://en.wikipedia.org/wiki/Bayesian_optimization

How to use Vizier

1. With Google Cloud
- Called “Vertex Al Vizier’
- Free tier available

2. Upcoming open source version
- GitHub Link:
github.com/google/vizier
- Supports custom search
algorithms

Google

Vertex Al > Documentation > Guides Was this helpful? i) (s}

Vertex Al Vizier Send feedback
overview 0O

On this page v
Additional Vertex Al Vizier functionality
Tune parameters
Optimize any evaluable system
How Vertex Al Vizier works
Study configurations
Studies and trials
Measurements

Search algorithms

Vertex Al Vizier is a black-box optimization service that helps you tune
hyperparameters in complex machine learning (ML) models. When ML models
have many different hyperparameters, it can be difficult and time consuming to
tune them manually. Vertex Al Vizier optimizes your model's output by tuning
the hyperparameters for you.

Black-box optimization is the optimization of a system that meets either of the
following criteria:

« Doesn't have a known objective function [to evaluate.

« |Is too costly to evaluate by using the objective function, usually due to the
complexity of the system.

Creating a Vizier Study

vizier_client = aiplatform.gapic.VizierServiceClient(

param_layer1_weightquantizer_bits = {
'parameter_id': layer1_weightquantizer_bits,
'integer_value_spec': {
‘'min_value': 4,
‘max_value': 12

client_options=dict(api_endpoint=ENDPOINT)),

study=vizier_client.create_study(parent=PARENT,
study=study)

} STUDY_NAME = study.name

metric_accuracy = {
‘metric_id': 'accuracy',
‘goal': 'MAXIMIZE'

metric_cost = {
'metric_id': ‘cost’,
"goal': 'MINIMIZE'

}

study = {
‘display_name': STUDY_DISPLAY_NAME,
"study_spec': {
'parameters': [param_layerl1_weightquantizer_bits,
param_layer2_weightquantizer_bits, ..
‘metrics': [metric_accuracy, metric_cost],

Running a Vizier Study

EVERY WORKER RUNS THIS CODE

Get a suggested set of parameters from the Vizier search
algorithm
suggest_response = vizier_client.suggest_trials({
‘parent': STUDY_NAME,
‘suggestion_count': 1,
‘client_id': CLIENT_ID
1)

Current model configuration
trial_config = suggest_response.result().trials[@]

Create the QKeras model and run the training
gkeras_model = create_gkeras_model(trial_config)
gkeras_model.train()

experiment_results = gkeras_model.evaluate()

Report the measurements
vizier_client.add_trial_measurement({
‘trial_name': TRIAL_ID,
‘measurement’ : {
'metrics': [**experiment_results]

objectiveValue trialld elapsedSecs activation hidden_units leamning_rate batch_size
A A - o

/
- - N\ /

0.90000 RESSS N 30000 900 90000
800 8.0000
25000
700 7.0000

6.0000
5.0000 10

0.50000
4.0000

0.40000
300 3.0000
0.30000

200 A 2.0000

0.20000

0.10000 4 ron—L

Figure 4: The Parallel Coordinates visualization [18] is
used for examining results from different Vizier runs. It
has the benefit of scaling to high dimensional spaces (~15
dimensions) and works with both numerical and categor-
ical parameters. Additionally, it is interactive and allows
various modes of slicing and dicing data.

Learnable Quantizers

What if we could get the model to learn how to
assign bits while training?

We have implemented this in QKeras as an
experimental quantizer with promising results

Weight Quantization
© o
i it Parameterized interval

Pruning Clipping
«—>

I : back-propagation

Activation Q
=)
X
x oo —b ™
Trainable
quantization interval cxpdy,
(a) Quantization Interval (b) A convolutional layer of our low bit-width network

Figure 1. Illustration of our trainable quantizer. (a) Our trainable quantization interval, which performs pruning and clipping simultaneously.
(b) The I convolution layer of our low-precision network. Given bit-width, the quantized weights W, and activations X; are acquired
using the parameterized intervals. The interval parameters (cw,,dw,, cx,, dx,) are trained jointly with the full-precision weights W;
during backpropagation.

Learning to Quantize Deep Networks by
Optimizing Quantization Intervals with Task Loss

Sangil Jung'* Changyong Son'* Seohyung Lee' Jinwoo Son' Jae-Joon Han'
Youngjun Kwak' Sung Ju Hwang? Changkyu Choi'

'Samsung Advanced Institute of Technology (SAIT), South Korea
2Korea Advanced Institute of Science and Technology (KAIST), South Korea

LEARNED STEP SIZE QUANTIZATION

Steven K. Esser ; Jeffrey L. McKinstry, Deepika Bablani,
Rathinakumar Appuswamy, Dharmendra S. Modha

IBM Research
San Jose, California, USA

ABSTRACT

Deep networks run with low precision operations at inference time offer power
and space advantages over high precision alternatives, but need to overcome the
challenge of maintaining high accuracy as precision decreases. Here, we present a
method for training such networks, Learned Step Size Quantization, that achieves
the highest accuracy to date on the ImageNet dataset when using models, from a
variety of architectures, with weights and activations quantized to 2-, 3- or 4-bits of
precision, and that can train 3-bit models that reach full precision baseline accuracy.
Our approach builds upon existing methods for learning weights in quantized
networks by improving how the quantizer itself is configured. Specifically, we
introduce a novel means to estimate and scale the task loss gradient at each weight
and activation layer’s quantizer step size, such that it can be learned in conjunction
with other network parameters. This approach works using different levels of
precision as needed for a given system and requires only a simple modification of
existing training code.

Googdle

https://arxiv.org/pdf/1808.05779.pdf

nature machine intelligence

Explore content v About the journal v Publish with us v Subscribe

nature > nature machine intelligence » articles > article

Article | Published: 21 June 2021

Automatic heterogeneous quantization of deep neural
networks for low-latency inference on the edge for
particle detectors

Claudionor N. Coelho Jr, Aki Kuusela, Shan Li, Hao Zhuang, Jennifer Ngadiuba, Thea Klaeboe Aarrestad &,

Vladimir Loncar, Maurizio Pierini, Adrian Alan Pol & Sioni Summers

Nature Machine Intelligence 3, 675-686 (2021) | Cite this article

1218 Accesses | 15 Citations | 25 Altmetric | Metrics

Google

The task is “discrimination of jets, a collimated spray of particles, stemming from the decay and/or
hadronization of five different particles. [We must detect the presence of a | quark (q), gluon (g), W
boson, Z boson, and top (t) jets, each represented by 16 physics-motivated high-level features”

Accuracy Resource HLS proiect
TensorFlow Keras model requirement constraints PO
¢ ¢ EEEEEEEEER
HE N

Quantization |
configuration 9 hls4ml o] |

n

o

) AutoQKeras Fixed-point translation) - :
optimization Parallelisation :- il =

B E .

|

m

|

QKeras Firmware generation a

model " EHE B

T T ¢ SpeEEEEEER
= QKeras QTools KTuner E
- quantizers estimates API .

FIG. V. The full workflow starting from a baseline TensorFlow Keras Model, which is then converted into an optimally quantized
equivalent through QKeras and AutoQKeras. This model is then translated into highly parallel firmware with hls4ml.

Google

Dense (64)
(4,0)

Dense (32) Dense (32)
Ternary Q@n

Input (16) /724 Dense (5)
(16.6) : Binary b: (8.3)

W
N\

TABLE II. Per-layer quantization configuration and the relative model energy consumption for the AutoQKeras Energy
Optimized (QE) and AutoQKeras Bits Optimized (QB) models, compared to the simple homogeneously quantized model, Q6.
Model Acc. [%)]

. s E Bit
Precision Eqs BitlsCSm
Dense ReLU Dense ReLU Dense ReLU

Dense Softmax |
QE 723 (4,0) (4,2) Ternary (3,1) (2,1) (4,2) w: Stoc. Bin. b: (8,3) (16,6) [0.27 0.18
QB 72.8 (4,0) (4, 2) Stoc. Bin. (4, 2) Ternary (3, 1) Stoc. Bin. (16, 6) | 0.25 0.17
Q6 74.8 (6,0) (6,0) (6,0) (6,0) (6,0) (6,0) (6, 0) (6,0) [1.00 1.00

Google

FIG. I. An ultra-compressed deep neural network for particle identification on a Xilinx FPGA.

Google

Thank you!

Any Questions?

Daniele Moro - danielemoro@google.com

Google

| tinyML Summit 2022 Sponsors

ANALOG ¥ o
DEVICES ONdevices q r m AN ASPINITY bramchl P): C EVA

AHEAD OF WHAT'S POSSIBLE™

Deeplite = EDGE IMPULSE {‘m €mMza Y FotaHub SREENNANES 99 £Grovety Lnc.

Q‘// Himax BHOTG (%) imagimob (in’fineon Gip) itemis A sk e

GaLatentAl #LaTTiceE Micro.ai - (mniML WO feE/ BArumea
:Ei; Qeexo Qualcomn © Rackner = RealityAl RESXEN

aY DO ram—_ S:?nyicon uctor
RENESAS LV () seeed SensiML somiconduc Ly ooz

Corporation life.augmented

) synaptics SynSense SYNTIANT £ Tensil.ai T TensorFlow ~ AMOS

b Copyright Notice

The presentation(s) in this publication comprise the proceedings of tinyML® Summit 2021. The content
reflects the opinion of the authors and their respective companies. This version of the presentation may
differ from the version that was presented at the tinyML Summit. The inclusion of presentations in this
publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of
the authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyML.org

