
March 28-30, 2022 | San Francisco Bay Area

Miniature dreams can come true…

© 2014 IBM Corporation2 IBM Confidential

Mastering the 3 Pillars of AI Acceleration: Algorithms,
Hardware and Software

Swagath Venkataramani

IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

TinyML Summit 2022

© 2014 IBM Corporation3 IBM Confidential

The evolution of AI: Past, Present and Future

Narrow AI
Single task, single domain
Superhuman accuracy and
speed for certain tasks

Broad AI
Multi-task, multi-domain
Multi-modal
Distributed AI
Explainable

General AI
Cross-domain
learning and reasoning
Broad autonomy

2050 and beyond

▼ We are here

© 2014 IBM Corporation4 IBM Confidential

The path to Broad AI

Trusting AI
Novel techniques to
instrument key
dimensions of trust
and enable AI
solutions that inspire
confidence.

Advancing AI
Powering advances in
perception, reasoning
and understanding to
help AI address
complex human-like
tasks.

Scaling AI
Novel technologies
across the full
computing stack that
make AI faster, easier,
and able to scale to
larger and more
complex problems.

Focus of this talk

© 2014 IBM Corporation5 IBM Confidential

Deep Learning (DL) Training and Inference Use Cases
§ Model Training

– Typically on-prem

– Customized GPU / ASIC Cluster of > 16 chips

– Days-weeks to train DL models

§ Server Inference
– Most cases allow some form of batching (i.e. latency insensitive)

– Currently CPU dominated – transitioning to PCIe attached accelerators

§ Transactional Inference
– Extremely latency sensitive – difficult to batch DL jobs.
– Use cases : Financial industry, insurance,....

– PCIe attached and on-CPU chip accelerators

§ Autonomous Driving (Latency sensitive)
– Largely focused around image, LIDAR / other sensor processing & fusion

– Accuracy is extremely important
– Huge # of Ops and extremely latency sensitive à customized SoCs

§ Inference on Mobile / IoT devices
– Security, Mobile, Home Appliances. Drones,....

– Deep Learning based Object detection, Image Classification, Translation
– Slightly lower accuracy tolerable

Nvidia DGX

Security Camera

Self Driving Car

© 2014 IBM Corporation6 IBM Confidential

Deep Learning System Bottlenecks

§ Large system training :
– Multiple 300W GPUs/ASICs connected on a node (using

proprietary links) + Multiple Nodes connected via Infiniband

§ Training Bottlenecks:

– Computation: Minibatch SGD
• Peak GPU / ASIC Flops capability

• Utilization : Typical GPU utilization ~ 10 – 35% - depends on minibatch
size (higher the better) – limited by memory bandwidth!

– Communication: Different synchronization schemes possible
• Overheads depend on superminibatch size and # of learners but limited by
DL convergence - limited by chip-to-chip bandwidth.

Test Server

Status Server

PS 1 PS MPS 2

Parameter Server Group

Distributed File System (GPFS)

…

minibatches

. . .
Learner 1

libdnn.a

Acc.

Learner 2

libdnn.a

Acc.

Learner Agent N

libdnn.a

Acc.

ΔW
W

Deep Learning InferenceDeep Learning Training

§ Typically single-chip (board) solution
– 75W PCIe attached
– Virtualization (multi-thread /multi-process /

multi-VM) support critical

§ Inference Bottlenecks:
– Computation bottlenecks:

• Peak GPU / ASIC Flops capability.
• Utilization : Typically higher than training since fewer
tensors – but still limited by memory bandwidth

– No communication bottlenecks.
• Multi-chip inference not common

7

AI System Design: Ingredients

AI Efficiency

Custom
Compilers

Hardware
Accelerators

Approximate
Computing

Compute Platforms
specialized to execute
AI workloads efficiently Leverage resiliency of

AI workloads to
approximate selected

computations and
benefit efficiency

Software stacks for AI
to maximize efficiency

and easy
programmability

8

AI System Design: Ingredients

AI Efficiency

Custom
Compilers

Hardware
Accelerators

Approximate
Computing

• “A scalable multi-tera ops deep
learning processor core for AI
training and inference”, VLSI 2018

• “DLFloat: A 16-b Floating Point
format designed for Deep Learning
Training and Inference”, ARITH
2019

Training:
• Deep learning with limited numerical

precision, ICML 2015
• Adacomp: Adaptive residual gradient

compression for data-parallel
distributed training, AAAI 2018

• Training deep neural networks with
8-bit floating point numbers, NeurIPS
2018

• Hybrid 8-bit Floating Point (HFP8)
Training and Inference for Deep
Neural Networks, NeurIPS 2019

Inference:
• Pact: Parameterized clipping

activation for quantized neural
networks, arXiv 2018

• Bridging the accuracy gap for 2-bit
quantized neural networks (QNN),
SysML 2018

• Compensated-DNN: energy efficient
low-precision deep neural networks
by compensating quantization errors,
DAC 2018

• BiScaled-DNN: Quantizing Long-tailed
Data structures with Two Scale
Factors for Deep Neural Networks,
DAC 2019

• “DeepTools: Compiler and Execution Runtime
Extensions for RaPiD AI Accelerator”, IEEE
MICRO 2019

• Performance-driven Programming of Multi-
TFLOP Deep Learning Accelerators, IISWC 2019

• Design Space Exploration for Performance
Optimization of Deep Neural Networks on Shared
Memory Accelerators, PACT 2017

• “Memory and Interconnect Optimizations for
Peta-Scale Deep Learning Systems”, HIPC 2019

• A Compiler for Deep Neural Network
Accelerators to Generate Optimized Code for a
Wide Range of Data Parameters from a Hand-
crafted Computation Kernel, COOLCHIPS 2019

9

Hardware Accelerators

10

Deep Learning (DL) Accelerator: Hardware Design Principles

1. End-to-end performance
–Parallel computation, high utilization, high data bandwidth
–Support minibatch sizes down to as low (1 if possible)

• Useful for transactional inference and extremely scaled training use cases.

2. DL model accuracy
–DL operations require a mix of various precisions (fp32, fp16, .. INT2)
–Design optimized for mixed-precision processing engines

• Support for higher precision reduces efficiency of low-precision hardware

3. Power efficiency
– It’s an accelerator: application power should be dominated by compute elements

4. Flexibility and programmability
– Support dataflow diversity and development of future algorithms
– Architecturally maximize on-chip reuse: Access to data is as important as compute

5. Scalability
– Single-core vs. Multi-core approach
– Effective core-to-core and chip-to-chip communication

Slide 10

11

Workload Profiling

§ Op count is dominated by matrix operations and a small set of other functions

– Convolution/Matrix multiplication

– Vector operations: Point-wise functions with/without reduction

§ All functions are highly parallelizable

Speech
(RNN)

Language
(DNN)

Vision
(RNN)

BN50
Char

LSTM
Nat Lang

VGG
AlexNet

12

§ Many highly tuned fp pipelines and high bandwidth throughout
[Performance]

– Customized dataflow architectures

– Algorithm/program/ISA/hardware co-designed specifically for DL
workloads

§ Balanced multiple-precision support [Accuracy]

– Precision chosen for each computation, for training and inference

§ Simplify logic in and around compute pipelines [Power]

– Carefully curated ISAs

– Streamlined control logic

– PEs use > 80% of power

§ ISA-accessible communications network [Programmability/Scalability]

12

RaPiD: 14nm 1.5 GHz DL accelerator core

• Peak performance of 1.5 TFLOPS fp16, 12 TOPS ternary and 25 TOPS binary

• Sustained utilization >90% on multiple neural-network topologies

• Core in+out bandwidth of 96+96 GB/s for scalability

A scalable multi-teraops deep learning processor core for AI training and inference, Fleischer et al, VLSI 2018.

13

RaPiD Core Microarchitecture
8K

B
 L

0
Sc

ra
tc

hp
ad

 (X
)

19
2+

19
2

G
B/

s
R

+W

8 KB L0 Scratchpad (Y)
192 + 192 GB/s R+W

PE PE PE PE…

PE PE PE PE…

…

PE PE PE PE…

… … …

SFU SFU SFU SFU

2MB Lx Scratchpad
192 + 192 GB/s R+W

…

2-D compute array (torus)

Core I/O

CMU

§ Dataflow with scratchpad hierarchy

§ Customized dataflow architecture – hybrid SIMD-Dataflow vs.
traditional Dataflow

§ Reduced-precision based PEs (Processing Elements) for matrix /
convolution ops

– Support for precisions down to 2-bits (FP16 / FP8 / INT4 / INT2)
– Minimum accumulation precision (HW chunking techniques for ALUs)

§ Limited FP32 SFUs (Special Function Units)
for vector (linear/non-linear) ops

– Needed primarily for softmax, batchnorm and axpy for training

§ Directly-addressable multi-level scratchpads (Software
managed) for high utilization (core efficiency)

§ Double-buffering in Lx and high bandwidth between Lx-L0-
compute

A scalable multi-teraops deep learning processor core for AI training and inference, Fleischer et al, VLSI 2018.

14

ISA features

Features to support algorithm variations and future development

Slide 14

Matrix
multiply FlexibilityNative

convolution

FP16 dataflow

Special-purpose
data movement ops

FMA operands from
data flowing H/V
and in local regs

Dataflow
mapping by ISA

Implement one
algorithm with

different
precisions

Simple vector
functionsVector functionsVector functions with

reduction

Estimate ops
for FP16 and FP32

Native support for
reduction

Independent matrix
and vector programs

Single-instruction
ReLu, etc.

A scalable multi-teraops deep learning processor core for AI training and inference, Fleischer et al, VLSI 2018.

Softmax,… Tanh,… ReLU, Pool,…

15

Peta-Scale Deep Learning System

§ Customized server class system for
training deep learning models

§ 5 tiered hierarchy

– PE: SIMD multiply-and-accumulate
engines

– PE array: 2D array of Pes

– Core: Multiple PE arrays with shared
memory and special

– Chip: Ring of cores

– System: 2D torus of chips

System Chip

Co
re

Co
re

Co
re

Co
re

Co
re

Co
re

Co
re

Co
re

Ex
te

rn
al

 M
em

or
y

Chip

2D-Torus Interconnect

On-chip Interconnect

Scratchpad Memory

PE
Array

SFP SFP

PE
Array

CorePE Array

PE

Cols

Ro
w
s

FI
FO

FI
FO

FI
FO

FIFO
FIFO

FIFO

PE

Reg.
File

X
+

ACC

X
+

ACC

MAC
Units

16

Custom Compilers

17

Programmable Deep Learning Accelerator Systems

§ Each architecture represents a different point in energy vs. throughput trade-off

– Demonstrate impressive peak performance and processing efficiency

– Programmable à Flexibility to execute DNNs of various shapes and sizes

Challenge:

• How do we program accelerators to achieve best possible system utilization for any given DNN?

• How do we achieve performance without sacrificing end-user (non-expert users) productivity ?

Server-class Systems

DaDianNao[MICRO14]
NeuroCube[ISCA16]
TPU [ISCA17]
ScaleDeep [ISCA17]
………

SCALEDeep	
Node Chip

Tiles
Chip	Cluster

Low-power IP cores

MAPLE [PACT10]
NeuFlow [CVPRW11]
DianNao [ASPLOS14]
Eyeriss [ISSCC16]
DANA [PACT15]
Minerva [ISCA16]
Multi-TOPS Core [VLSI18]
……..

8K
B

 L
0

Sc
ra

tc
hp

ad
 (X

)
19

2+
19

2
G

B/
s

R
+W

8 KB L0 Scratchpad (Y)
192 + 192 GB/s R+W

PE PE PE PE…

PE PE PE PE…

…

PE PE PE PE…

… … …

SFU SFU SFU SFU

2MB Lx Scratchpad
192 + 192 GB/s R+W

…

2-D compute array (torus)

Core I/O

CMU

18

Programming Deep Learning Accelerators

§ DNNs are static dataflow graphs

– No data dependent execution paths, irregular memory access patterns etc.

– Possible to define a space of mapping configurations and identify the best configuration offline
– Performance estimation to reasonable accuracy through analytical analysis

§ DNN functionality can be expressed using small set (tens) of primitives

– For example, VGG11 network contains >10 billion scalar ops, but expressible with 6 functions: Convolution,
Matrix-multiplication, ReLU, Max pooling, Softmax & Bias-add

– Complexity of how each function is optimally realized is hidden behind library/API calls

§ But, significant heterogeneity in shape and size of each data-structure, which makes each operation
computationally unique

– Insight: Each layer/op needs to be programmed differently

Layer CONV1 CONV2 … CONV3_2 CONV4_1 … CONV5_2 … FC_7

Feature size 64x
224x224

128x
112x112

256x
56x56

512x
28x28

512x
14x14

4096x
1x1

Ops/By 25.78 372.58 842.51 519.06 180.63 1.00

19

DeepTools: Software Stack for AI

Data tr.
Host ⇔
RaPiD

Graph Construction

Graph Execution

Graph Optimization

DNN
Specification
(Python, …)

DEEP LEARNING FRAMEWORK

PE Array

SFU / L0-Y

Lx
(2MB SRAM)

clk gen

L0
-X

cn
tlcmu

DEEPRT – COMPILER RUNTIME

CPU

RAPIDLIB –
EXECUTION

RUNTIME

RaPiD AI Core

DMA

RaPiD Ops

USER INPUT

AI SYSTEM

CPU Ops

RaPiD Graph

R1

R2

R3

CPU RaPiDData
Opt.

RaPiD
Graph

For each RaPiD Node
RapidDSC

Parameters to express computation
in RaPiD (for code generation)

Hand-optimized
primitives

Intra-node Optimizations &

Temporal Work Sequence

DeepMatrix

DeepCodeSmith
Templated Code

Generation

Graph Parser

Graph

Installer

Dev. Memory

DeepSpatialMatrix
Inter-node Opt. &

Spatial Work Partition

Optimized RaPiD Graph

Data Ops

Memory &

Scratchpad

Management

DeepStateInit

4

5

6

8
79

Initialize DMA

transaction
Name Prog. Addr.

R1 *p1

R2 *p2

R3 *p3

Node
Table

Identify program

address from Node

table

Launch RaPiD

Execution

1
2

3

10

11

20

§ DSM+DM: A systematic method to map DNNs on to any given accelerator system

–How the compute needs to be partitioned to across processing elements?

–How much data to stage in each memory, respecting capacity constraints?

–How the data movement needs to be orchestrated, given bandwidth limitations?
§ Key steps in DeepSpatialMatrix:

– Defines a “design space configuration”
• Hierarchical workload mapping across chips, cores, and PE arrays

– Uses analytical model to estimate performance of a given configuration
• Includes cost for every data-transfer, compute operation at each level

– Includes a design space exploration methodology to identify the performance optimal configuration

DeepSpatialMatrix (DSM) +DeepMatrix (DM) : Mapping DNNs on Accelerators

Workload
Description

System
Description

Performance
Summary

Layer/Pass-wise
Design Config.

Design Space
Configuration Design Space

Exploration

Performance
Estimation DeepSpatialMatrix

Repeat for all layers
FWD/BWD/UPD

21

Design Space Characterization (RapidDsc)

[~100 Parameters]

attr ChipD = <dim tuple>
attr CoreD = <dim tuple>

attr B = <dim tuple>
attr T = <dim tuple>

attr P = <dim tuple>

attr loopOrder =
<list {stage,dim}>

attr dataStructures = <list
{ attr layout = <dim tuple>
attr dataTransfers =

<list {src,dst,type,loopLoc}>
}>

Spatial work division
across chips and cores

Work fed to PE array

Data-staging params
for 2-level data tiling

Seq. of nested loops:
#loop stages * #dims

Info ∀ datastructure:
Memory layout, data-
transfers and their
source, dst., and
location within loops

attr N = <dim tuple> Total workload

attr compPrimitives = <list> Primitive PE/SFP ops.

§ Spatial Work Division: Defines the work division across cores
and chips

– Also defines how data is organized in memory and
scratchpad of different cores

§ Dataflow: Orchestrate compute within PE array

– Data-structure/workload dimension mapped along rows,
columns and held stationery in register file

– Constrains for valid dataflows

§ Given the dataflow, the overall computation can be expressed
as a nested sequence of loops

§ Tile Sizes: Defines limits for how data-structures are chunked
across memory hierarchy levels

§ Loop Order: Determines the order in which each data-
structure is traversed

§ Data-transfer Location: Capacity and reuse of each data-
structure at each level of memory

© 2014 IBM Corporation22 IBM Confidential

Key Optimizations

1. Dataflow selection [Within Core, Within Node]

– The direction we flow the elements of each data-structure (INP, OUT, KER) to PEs

– The dimension of that data-structure that is spatially mapped

– Input vs. Output vs. Weight stationery….

2. Temporal Work Sequence [Within Core, Within Node]

– Define loop structures and tile sizes

– Balance computation with data fetch cost

– Identify critical data structures and maximize its reuse

3. Operation fusion [Within Core, Across Nodes]

– Fuse successive operations in the computation graph

– Eliminates access to memory

– Eg. Convolution with ReLU and Pooling.

Reg

OUTPUT

INPUT
KERNELin

in

out

out

© 2014 IBM Corporation23 IBM Confidential

Key Optimizations
4. Inter-layer Memory Reuse [Across Cores, Across Nodes]

– Hold output of a node in local scratchpad anticipating reuse in future nodes

– Given finite on-chip capacity, which data-structures to hold and what is its
impact on overall performance?

5. Dynamic Spatial Minibatching [Across Cores, Across Nodes]

– Dynamically change working set size (minibatch) layer-wise based on available
on-chip capacity

6. Type of parallelism [Across Chips, Within Node]

– How work is split work across chips?

– Determines communication between chips

– Data vs. Model vs. hybrid parallelisms

Layer i Layer i+1 Layer i+2

Acti

2D-tours w. asymmetric
bandwidth: X-ring BW > Y-ring BW

Pa
ra

lle
lis

m
 in

 X
-d

ir.

Parallelism in Y-dir.

Data Model

Da
ta

M
od

el

All-Data

X-Ring

Y-Ring
All-Model

ModelXDataY

DataXModelY

ChipDOUT = NOUT
ChipDMB = NMB/MN
Grad. reduction
along X & Y

ChipDOUT = NOUT/M
ChipDMB = NMB/N

Fea. rotation in X
Grad. reduction in Y

ChipDOUT = NOUT/N
ChipDMB = NMB/M

Grad. reduction in X
Fea. rotation in Y

ChipDOUT = NOUT/MN
ChipDMB = NMB

Fea. rotation
along X & Y

Feature-
heavy
layers

Weight-
heavy
layers

All-Model

Preferred Parallelism

All-Data

DataX
ModelY

ModelX
DataY

X

X

X

X

N

M

7. Timestep Pipelining [Across Chips, Across
Nodes]

– Map multiple layers spatially across the
system and execute them in pipelined fashion

– Applies to LSTM and seq-to-seq models with
a timestep dimension

© 2014 IBM Corporation24 IBM Confidential

Configuration Estimation
§ A waveform based approach

to compute execution cycles
for a given RapidDsc

– Explicitly accounts for
each compute iteration,
overlapped and visible
data-transfers

– Components: Compute
time, overlapped data-
transfer time, non-
overlapped data transfer
time, auxiliary compute
time, pipe bubbles

Program
1.	transfer	tOut
2.	for	1	à lc2:	(=	2)
3.				transfer	tKer
4.				transfer	pKer
5.				transfer	tInp
6.				for	1	à lc1:	(=	3)
7.								transfer	pInp
8.								transfer	pOut
9.								compute()

tInp

Ninp,	Nout,	NKer

tOut

PE	Arr.	(PInp,	POut,	PKer)

Link:	Lk2	
Link:	
Lk1	

Link:	Lk3	

Trans. Type Link
pInp Stream. Lk1
POut Stream Lk2
pKer Blk-Load Lk2
tInp Dbl-Buff. Lk3
tOut Dbl-Buff. Lk3
tKer Stream. Lk3

PE-Array

Lk	1

Lk	2

Compute

PInp

POut

PKer

Lk	3

TInp

TOut

TKer

lc2:1
lc1:1

lc2:1
lc1:2

lc2:1
lc1:3

lc2:2
lc1:1

lc2:2
lc1:2

lc2:2
lc1:3

lc2
:1

lc2
:2

Compute	Idles	as	Double-Buff	transfers	(tInp+tOut) dominates	Lk3

Compute	Idles	with	TKer/Pker Block-load	 in	Lk2,	Lk3

Loop	
Iteration

Ex.	Cycles =	(compute-cy	+	dbl-buf-idle-cy)	 *	(L1*L2)	+	blk-ld-idle-cy	*	L2	

Data-transfer	
groups

Total Execution Time =
MAX (Compute time,
CommOverlap time)
+ CommNonOverlap time
+ Aux ComputeTime
+ PipeBubble

© 2014 IBM Corporation25 IBM Confidential

Results

§ Architecture: System with 8 PFLOPs (half-precision)
peak processing power

– 64 chips, 32 cores/chip, 1024 MACs/core

§ Performance model calibrated with measurements
from fabricated chip at 14nm

§ DeepTools explored over a million mapping
configurations in <15 mins

System
Params.

Number of Chips 64 {16-256}

Chip
Params.

Number of Cores 32

Core
Params.

Num. of MACs (FP16) 1024
Spad Mem. (MB) 1 {0.5-4}

Spad. Bandwidth (GBps) 128
Frequency (GHz) 2

Chip Topology Ring
Core-to-Core Bandwidth (GBps) 256
External Mem. Capacity (GB) 8
External Mem. Bandwidth (GBps) 256 @ 80% eff.

System Topology 2D-Torus Chips X,Y: 4, 16{4,64}

Chip-to-chip Bandwidth (GBps)
Symm. - X: 80 Y: 80; Asymm. -

X: 120 {30-240} Y: 40 {10-80}

Bold àBaseline configuration; {italics} à Range used for sensitivity studies

§ Benchmark: Heterogenous selection of DNNs

– Convolutional neural networks
• AlexNet, VGG16: Many compute-heavy layers

• ResNet18, Resnet50: Many lean layers that are memory-
bound

– LSTM network
• GNMT: Very small work per layer per timestep

§ 1.8X-4.1X performance improvement over hand-tuned
mapping

0

0.2

0.4

0.6

0.8

1

AlexNet VGG16 Resnet18 Resnet50 GNMT GeoMean

Ut
ili

za
tio

n

Homogenous DeepTools

2.9X1.8X2.0X 2.8X2.0X
4.1X

© 2014 IBM Corporation26 IBM Confidential

VGG16: Layerwise study
§ DSM+DM automatically modulates how each layer is mapped based on the layer’s characteristics – Initial

CONV vs. Mid CONV vs. Fully-connected layers

§ Detailed view into performance bottlenecks for each layer

Layer
FWD/BWD/UPD

Parallelism
Type

CoreD Split Mem-
Opt

DySM
Factorin out ij mb kij

CONV1_1 Data 32 Y 4
CONV1_2 Data 32 N 4

CONV2_2 Data 2 8 2 Y 4
CONV3_1 Data 4 4 2 Y 4

CONV4_3 Data 8 2 2 Y 4
CONV5_1 Data 8 4 Y 4

FCON1 Model 32 Y 1

FCON2 DataX-
ModelY 4 8 Y 1

FCON3 DataX-
ModelY 32 Y 1

0

0.2

0.4

0.6

0.8

1

CO
N

V1_1

CO
N

V1_2

CO
N

V2_1

CO
N

V2_2

CO
N

V3_1

CO
N

V3_2

CO
N

V3_3

CO
N

V4_1

CO
N

V4_2

CO
N

V4_3

CO
N

V5_1

CO
N

V5_2

CO
N

V5_3

FCO
N

1

FCO
N

2

FCO
N

3

U
ti

li
za

ti
o

n

MAC Compute PE Array Underuse Visible Overlapped Tr.

Non-overlapped Tr. Aux. Compute FWD (& BWD) PASS

0

0.2

0.4

0.6

0.8

1

FCO
N

3

FCO
N

2

FCO
N

1

CO
N

V5_3

CO
N

V5_2

CO
N

V5_1

CO
N

V4_3

CO
N

V4_2

CO
N

V4_1

CO
N

V3_3

CO
N

V3_2

CO
N

V3_1

CO
N

V2_2

CO
N

V2_1

CO
N

V1_2

CO
N

V1_1

U
ti

li
za

ti
o

n

Total: MAC Compute = 73%, PE Array Underuse = 5%, Visible Overlapped
Transfer = 5%, Non-overlapped Transfer = 16%, Auxiliary Compute = 1%

UPD PASS

Fea./Err.
Rotation

Compute
Act. Fn

Memory
Read Inp
& Write

Out

FWD/BWD
Compute-bound layers

Gradient
Reduction

Feature
Rotation

UPD Compute-bound layers

27

Approximate Computing

28

Approximate Computing Overview and Techniques

Approximate and error tolerant
Algorithms

Approximate and Stochastic Chip
Architectures

Approximate and error resilient Circuits

Approximate and Stochastic Devices

•  Stochastic Programming
Models

•  Real time algorithms
•  Compilers

•  Automatic synthesis of
Approximate and error

resilient circuits

•  Modeling of Approximate
and Stochastic logic and

memory devices

Cognitive Application Stacks •  Novel data ingestion
mechanisms designed for
stochastic sensory inputs

Near Term

Medium Term

Long Term

• Large spectrum of cross-stack approximate
computing techniques available.

• 3 Primary techniques (already) being used
widely in DL

• Precision:
• Scaled precision for Training and

Inference
• Maximum bang for the buck (quadratic

gains in efficiency w. precision)

• Compression:
• Lossy compression to minimize data

communicated between ASICs for training.

• Synchronization:
• (Mostly) SW techniques to minimize

synchronization overheads for distributed
training.

29

Algorithmic Approximations for AI

Inference
(beyond INT8)

Fixed-point
quantization with

retraining

Custom number
formats for post

training quantization

Weight pruning and
compression

Training
(beyond FP16)

Custom FP8
representation

Adaptive gradient
compression

30

Algorithmic Approximations for AI

Inference
(beyond INT8)

Fixed-point
quantization with

retraining

Custom number
formats for post

training quantization

Weight pruning and
compression

Training
(beyond FP16)

Custom FP8
representation

Adaptive
gradient

compression

• Deep learning with limited
numerical precision, ICML
2015

• Training deep neural
networks with 8-bit
floating point numbers,
NeurIPS 2018

• Hybrid 8-bit Floating Point
(HFP8) Training and
Inference for Deep Neural
Networks, NeurIPS 2019

• Adacomp: Adaptive
residual gradient
compression for data-
parallel distributed
training, AAAI 2018

• Pact: Parameterized
clipping activation for
quantized neural
networks, arXiv 2018

• Bridging the accuracy
gap for 2-bit quantized
neural networks (QNN),
SysML 2018

• Compensated-DNN:
energy efficient low-
precision deep neural
networks by
compensating
quantization errors, DAC
2018

• BiScaled-DNN: Quantizing
Long-tailed Data
structures with Two Scale
Factors for Deep Neural
Networks, DAC 2019

31

Algorithmic Approximations for AI

Inference
(beyond INT8)

Fixed-point
quantization with

retraining

Custom number
formats for post

training quantization

Weight pruning and
compression

Training
(beyond FP16)

Custom FP8
representation

Adaptive gradient
compression

32

Quantized Deep Neural Networks

§ Implement DNN weights and activations using Fixed-Point (FxP) representation

– Number of IB and FB bits determine the range and resolution respectively

– The dynamic range of weights and activations are different for each layer

§ Advantages:

– Smaller ALUs è lead to power and performance benefits

– Smaller memory footprint
– Smaller data elements è increase data transfer efficiency

§ Challenge: Invariably suffer from quantization errors, which degrades accuracy

– Choose the right range and resolution for each data-structure

– Retrain the network considering quantization errors

Sign Bit (SB)
Integer Bits (IB) Fraction Bits (FB)

0.002
0.016
0.125
1.000
8.000
64.000
512.000

4,096.000

(12
,-5
)

(10
,-3
)
(8,
-1) (6,

1)
(4,
3)

(2,
5)

(0,
7)

(-2
,9)

8 bits FxP representations (IB,FB)

Resolution
Range

High Range
Poor Resolution

Low Range
Good Resolution

33

New Techniques for Inference with Hyper-Scaled Precision

Activation Quantization
PArameterized Clipping

acTivation (PACT)

– Automatic tuning of clipping
level to balance clipping vs
quantization error

quantization applied

ResNet block

Full-Prec

Weight Quantization
Statistics Aware Weight Binning

(SAWB)

– Exploit weight statistics to
better capture shape of weight

Quantization in the Presence of
Shortcut Connections

Full-Precision Shortcut

– Enhance gradient-flow of training
by not quantizing shortcut

𝜶𝒘∗ = 𝒄𝟏 $ 𝑬 𝒘𝟐 − 𝒄𝟐 $ 𝑬 𝒘

!
"#

/!
|"
|

J. Choi et. al (presented at SysML 2019)

34

Inference : Challenges in Low Precision Activation Quantization

§ Trade-offs when quantizing activation
– ReLU: Cover large dynamic range (better convergence) è Suffer large quantization error

– Static clipping: Clip outliers (lower quant error) è Accuracy drop due to diminishing gradients

Trade-off between
Quantization & Clipping Error

70
50
30
10

Quantized

60-80
40-60
20-40

0-20

ReLU
x

ReLU(x)

5.2
3.7
2.2
0.7

Quantized
4.5-6
3-4.5
1.5-3
0-1.5

Static clipping
(e.g., ReLU6)

x

Clip(x)
6

CIFAR10 ResNet20: ReLU vs Clipping
when quantizing activation

with
quantization

w/o quantization

Hard to find sweet spot è Automatic tuning via training!

J. Choi et. al (presented at SysML 2019)

35

Activation Quantization : PArameterized Clipping acTivation (PACT)

§ Clipping level (= 𝜶) as a trainable parameter à Auto-tuned by Backprop

– 𝜶 is initialized with large value to emulate ReLU in the beginning

–L2-regularization on 𝜶è Converges to low magnitude to reduce quantization error
§ Ex: CIFAR10-ResNet20 with PACT

– PACT automatically finds the best clipping level without expensive sweeping over 𝜶

9.0%

9.5%

10.0%

10.5%

11.0%

11.5%

1 4 7 10 13 16

Va
lid

at
io

n
er

ro
r

Clipping level (ɑ)

Clip-A2

PACT-A2

J. Choi et. al (presented at SysML 2019)

36

Inference : Challenges in Low Precision Weight Quantization

§ Objective: Find a good quantization scale (𝜶𝒘)
– Assumption: symmetric distribution (usually true...),

Uniform quantization (for simple HW)

– Given a quantization scale, quantized weights are exclusively
determined

– Goal: find 𝜶𝒘 that minimizes quantization error

§ Previous approach: Find 𝜶𝒘 with respect to 𝑬 𝑾
– E.g., XNOR-Net, Ternary-Weight-Quant, etc.,

– Pros: Simple (sometimes with analytic solution)

– Cons: 𝐸 𝑊 is not enough to capture shape of W

Ex: XNOR-Net (Rastegari et al., 2016)
𝛼"-𝛼"

𝑛#$% = 4

Need an analytic solution that
better characterizes weight distribution

J. Choi et. al (presented at SysML 2019)

37

Weight Quantization : Statistics Aware Weight Binning (SAWB)

§ How to better capture shape of weight?

– 𝑬 𝑾 captures the representative values

– 𝑬 𝑾𝟐 captures the overall shape

– Use 𝑬 𝑾 and 𝑬 𝑾𝟐 for finding best 𝜶𝒘?

§ Verification:

– Take 6 representative distributions with varying
variance: Gaussian, Uniform, Triangle, Laplace,
Logistic, Von mises

– Sweep over 𝜶𝒘 to find one with smallest MSE(W-Wq)

– Linear regression to find relationship among 𝛼"∗ ,
𝐸 𝑊 and 𝐸 𝑊(

𝜶𝒘∗ = 𝒄𝟏 $ 𝑬 𝒘𝟐 − 𝒄𝟐 $ 𝑬 𝒘

!
"#

/!
|"
|

Logistic

Gaussian Uniform

Laplace

Triangle

Von mises

𝜶𝒘∗ = 𝒄𝟏 % 𝑬 𝒘𝟐 − 𝒄𝟐 % 𝑬 𝒘

Observation: 𝜶𝒘∗ is characterized by 𝑬 𝑾 and
𝑬 𝑾𝟐 è Analytic solution to find the best scale

J. Choi et. al (presented at SysML 2019)

38

Full Precision Short-Cut for Inference (FPSC)

§ Observation: ResNet is more sensitive to quant-error than VGG-like networks

– Short-cut in ResNet helps gradients to flow à Quantization on shortcut hinders training

§ Full-Prec Short-Cut: Avoid quantization at input activation and weight in short-cut

– Short-cut involves small weights à Full-Prec does not harm performance (<1% ResNet18)

– FPSC allows larger magnitude gradients à Improved gradient flow

ResNet block

QNN training: VGG vs ResNet

Improved gradient
flow by FPSC

0%

5%

10%

15%

20%

780 20280 39780 59280

Tr
ai

n
Er

ro
r

steps

VGG: Full-Precision
VGG: W/A 2-bit
ResNet20: Full-Precision
ResNet20: W/A 2-bit

quantization applied

Full-Prec

J. Choi et. al (presented at SysML 2019)

39

Hyper-Scaled Precision : Inference Accuracies on Models

CIFAR10 Dataset ImageNet Dataset

Accuracy
higher
than prior
workLowest

accuracy
degradation

J. Choi et. al (presented at SysML 2019)`

No loss of accuracy for 4-bit Inference

40

Algorithmic Approximations for AI

Inference
(beyond INT8)

Fixed-point
quantization with

retraining

Custom number
formats for post

training quantization

Weight pruning and
compression

Training
(beyond FP16)

Custom FP8
representation

Adaptive gradient
compression

41

Training Challenges Beyond FP16

FP8 Representation FP16 Accumulation Update

• State of the art Training systems use FP16 for data representations and FP32 for accumulations &
weight updates.

• Challenge: To reduce these precisions down to FP8 for representation and FP16 for accumulation &
weight updates.

• Goal: Increase training-performance by 4X over today’s systems!

N. Wang et. al (presented at NeurIPS 2018)

42

FP8 Training : FP8 Data Representation

§ First layer and last layers are very sensitive to lower-precision (FP8) –
especially for image processing (keep them in FP16).

§ Input to softmax is sensitive to low-precision : possible to keep last layer in
FP8 but outputs need to be preserved in FP16.

N. Wang et. al (NeurIPS 2018), and X. Sun et. al (NeurIPS 2019)

43

FP8 Training : Hybrid FP8 Data Representation

§ Multiple FP8 formats investigated

§ FWD FP 1-4-3 and BWD FP 1-5-2 (sign-exponent-mantissa)

§ FP 1-4-3 has an exponent bias of 4 to cover small numbers, [2-11, 30]

N. Wang et. al (NeurIPS 2018), and X. Sun et. al (NeurIPS 2019)

44

FP8 Training : FP16 Accumulations

§ Identified low-precision swamping as the key challenge with FP16 accumulations
(current state of the art is FP32 accumulations).

– Floating point addition involves right-shift of the smaller operands by the difference in exponents. In case of large-to-
small number addition, small numbers maybe partially or completely truncated causing information loss.

§ Chunk-based accumulations (Hierarchical accumulations) fix this problem.
– Enables FP16 accumulation (may need hardware support)

N. Wang et. al (NeurIPS 2018), and X. Sun et. al (NeurIPS 2019)

45

FP8 Training Results

• Combination of selective FP8 precisions, chunk-based accumulations and stochastic weight
updates enable baseline accuracies with FP8 Training for a wide variety of neural networks.

N. Wang et. al (NeurIPS 2018), and X. Sun et. al (NeurIPS 2019)

46

Summary

§ AI workloads have revolutionized application landscape

– Enabled new apps and services

– Impose extreme computational challenges

§ Need to rethink computing stack to boost efficiency of AI workloads

§ 3 key ingredients to building an efficient AI system:

– Hardware Accelerators: Specialized computing systems for AI

– Custom Compilers: Software stack to extract efficiency without
sacrificing end-user productivity

– Approximate Computing: Leverage resiliency to approximate
computations to benefit efficiency

§ Many exciting opportunities for the future as workloads continue to
grow and evolve!

AI Efficiency

Custom
Compilers

Hardware
Accelerators

Approximate
Computing

tinyML Summit 2022 Sponsors

Copyright Notice
This presentation in this publication was presented as a tinyML® Summit 2022. The content reflects the
opinion of the author(s) and their respective companies. The inclusion of presentations in this
publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of
the authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org

