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The evolution of AI: Past, Present and Future

Narrow AI
Single task, single domain
Superhuman accuracy and 
speed for certain tasks

Broad AI
Multi-task, multi-domain
Multi-modal
Distributed AI
Explainable 

General AI
Cross-domain 
learning and reasoning
Broad autonomy

2050 and beyond

▼ We are here
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The path to Broad AI

Trusting AI
Novel techniques to 
instrument key 
dimensions of trust 
and enable AI 
solutions that inspire 
confidence. 

Advancing AI 
Powering advances in 
perception, reasoning 
and understanding to 
help AI address 
complex human-like 
tasks.

Scaling AI 
Novel technologies 
across the full 
computing stack that 
make AI faster, easier, 
and able to scale to 
larger and more 
complex problems. 

Focus of this talk



© 2014 IBM Corporation5 IBM Confidential

Deep Learning (DL) Training and Inference Use Cases
§ Model Training

– Typically on-prem 

– Customized GPU / ASIC Cluster of > 16 chips 

– Days-weeks to train DL models

§ Server Inference
– Most cases allow some form of batching (i.e. latency insensitive)

– Currently CPU dominated – transitioning to PCIe attached accelerators

§ Transactional Inference 
– Extremely latency sensitive – difficult to batch DL jobs.
– Use cases : Financial industry, insurance,....

– PCIe attached and on-CPU chip accelerators

§ Autonomous Driving (Latency sensitive)
– Largely focused around image, LIDAR / other sensor processing & fusion

– Accuracy is extremely important
– Huge # of Ops and extremely latency sensitive à customized SoCs

§ Inference on Mobile / IoT devices
– Security, Mobile, Home Appliances. Drones,....

– Deep Learning based Object detection, Image Classification, Translation
– Slightly lower accuracy tolerable 

Nvidia DGX 

Security Camera

Self Driving Car
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Deep Learning System Bottlenecks

§ Large system training : 
– Multiple 300W GPUs/ASICs connected on a node (using 

proprietary links) + Multiple Nodes connected via Infiniband

§ Training Bottlenecks:

– Computation: Minibatch SGD 
• Peak GPU / ASIC Flops capability

• Utilization :  Typical GPU utilization ~ 10 – 35% - depends on minibatch 
size (higher the better) – limited by memory bandwidth!

– Communication: Different synchronization schemes possible
• Overheads depend on superminibatch size and # of learners but limited by 
DL convergence  - limited by chip-to-chip bandwidth.

Test Server

Status Server

PS 1 PS MPS 2

Parameter Server Group

Distributed File System (GPFS)

…

minibatches

.  .  .
Learner 1

libdnn.a

Acc.

Learner 2

libdnn.a

Acc.

Learner Agent N

libdnn.a

Acc.

ΔW
W

Deep Learning InferenceDeep Learning Training

§ Typically single-chip (board) solution
– 75W PCIe attached
– Virtualization (multi-thread /multi-process / 

multi-VM) support critical

§ Inference Bottlenecks:
– Computation bottlenecks:

• Peak GPU / ASIC Flops capability.
• Utilization : Typically higher than training since fewer 
tensors – but still limited by memory bandwidth

– No communication bottlenecks.
• Multi-chip inference not common 
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AI System Design: Ingredients

AI Efficiency

Custom 
Compilers

Hardware 
Accelerators

Approximate 
Computing

Compute Platforms 
specialized to execute 
AI workloads efficiently Leverage resiliency of 

AI workloads to 
approximate selected 

computations and 
benefit efficiency

Software stacks for AI 
to maximize efficiency 

and easy 
programmability
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AI System Design: Ingredients

AI Efficiency

Custom 
Compilers

Hardware 
Accelerators

Approximate 
Computing

• “A scalable multi-tera ops deep 
learning processor core for AI  
training and inference”, VLSI 2018

• “DLFloat: A 16-b Floating Point 
format designed for Deep Learning 
Training and Inference”, ARITH 
2019

Training:
• Deep learning with limited numerical 

precision, ICML 2015
• Adacomp: Adaptive residual gradient 

compression for data-parallel 
distributed training, AAAI 2018

• Training deep neural networks with 
8-bit floating point numbers, NeurIPS 
2018

• Hybrid 8-bit Floating Point (HFP8) 
Training and Inference for Deep 
Neural Networks, NeurIPS 2019

Inference:
• Pact: Parameterized clipping 

activation for quantized neural 
networks, arXiv 2018

• Bridging the accuracy gap for 2-bit 
quantized neural networks (QNN), 
SysML 2018

• Compensated-DNN: energy efficient 
low-precision deep neural networks 
by compensating quantization errors, 
DAC 2018

• BiScaled-DNN: Quantizing Long-tailed 
Data structures with Two Scale 
Factors for Deep Neural Networks, 
DAC 2019

• “DeepTools: Compiler and Execution Runtime 
Extensions for RaPiD AI Accelerator”, IEEE 
MICRO 2019

• Performance-driven Programming of Multi-
TFLOP Deep Learning Accelerators, IISWC 2019

• Design Space Exploration for Performance 
Optimization of Deep Neural Networks on Shared 
Memory Accelerators, PACT 2017

• “Memory and Interconnect Optimizations for 
Peta-Scale Deep Learning Systems”, HIPC 2019

• A Compiler for Deep Neural Network 
Accelerators to Generate Optimized Code for a 
Wide Range of Data Parameters from a Hand-
crafted Computation Kernel, COOLCHIPS 2019



9

Hardware Accelerators
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Deep Learning (DL) Accelerator: Hardware Design Principles

1. End-to-end performance
–Parallel computation, high utilization, high data bandwidth
–Support minibatch sizes down to as low (1 if possible)

• Useful for transactional inference and extremely scaled training use cases. 

2. DL model accuracy
–DL operations require a mix of various precisions (fp32, fp16, .. INT2) 
–Design optimized for mixed-precision processing engines

• Support for higher precision reduces efficiency of low-precision hardware

3. Power efficiency
– It’s an accelerator: application power should be dominated by compute elements

4. Flexibility and programmability
– Support dataflow diversity and development of future algorithms
– Architecturally maximize on-chip reuse: Access to data is as important as compute

5. Scalability
– Single-core vs. Multi-core approach
– Effective core-to-core and chip-to-chip communication

Slide 10
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Workload Profiling

§ Op count is dominated by matrix operations and a small set of other functions

– Convolution/Matrix multiplication

– Vector operations: Point-wise functions with/without reduction

§ All functions are highly parallelizable

Speech
(RNN)

Language
(DNN)

Vision
(RNN)

BN50
Char

LSTM
Nat Lang

VGG
AlexNet
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§ Many highly tuned fp pipelines and high bandwidth throughout  
[Performance]

– Customized dataflow architectures

– Algorithm/program/ISA/hardware co-designed specifically for DL 
workloads

§ Balanced multiple-precision support [Accuracy]

– Precision chosen for each computation, for training and inference

§ Simplify logic in and around compute pipelines [Power]

– Carefully curated ISAs

– Streamlined control logic

– PEs use > 80% of power

§ ISA-accessible communications network [Programmability/Scalability]

12

RaPiD: 14nm 1.5 GHz DL accelerator core

• Peak performance of 1.5 TFLOPS fp16, 12 TOPS ternary and 25 TOPS binary

• Sustained utilization >90% on multiple neural-network topologies

• Core in+out bandwidth of 96+96 GB/s for scalability

A scalable multi-teraops deep learning processor core for AI  training and inference, Fleischer et al, VLSI 2018.
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RaPiD Core Microarchitecture
8K
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2MB Lx Scratchpad
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…

2-D compute array (torus)

Core I/O

CMU

§ Dataflow with scratchpad hierarchy

§ Customized dataflow architecture – hybrid SIMD-Dataflow vs. 
traditional Dataflow

§ Reduced-precision based PEs (Processing Elements) for matrix / 
convolution ops

– Support for precisions down to 2-bits (FP16 / FP8 / INT4 /  INT2)
– Minimum accumulation precision (HW chunking techniques for ALUs)

§ Limited FP32 SFUs (Special Function Units)
for vector (linear/non-linear) ops

– Needed primarily for softmax, batchnorm and axpy for training

§ Directly-addressable multi-level scratchpads (Software 
managed) for high utilization (core efficiency)

§ Double-buffering in Lx and high bandwidth between Lx-L0-
compute

A scalable multi-teraops deep learning processor core for AI  training and inference, Fleischer et al, VLSI 2018.
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ISA features

Features to support algorithm variations and future development

Slide 14

Matrix
multiply FlexibilityNative 

convolution

FP16 dataflow

Special-purpose
data movement ops

FMA operands from 
data flowing H/V 
and in local regs

Dataflow
mapping by ISA

Implement one 
algorithm with 

different 
precisions

Simple vector
functionsVector functionsVector functions with 

reduction

Estimate ops
for FP16 and FP32

Native support for 
reduction

Independent matrix
and vector programs

Single-instruction 
ReLu, etc.

A scalable multi-teraops deep learning processor core for AI  training and inference, Fleischer et al, VLSI 2018.

Softmax,… Tanh,… ReLU, Pool,…
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Peta-Scale Deep Learning System 

§ Customized server class system for 
training deep learning models

§ 5 tiered hierarchy 

– PE: SIMD multiply-and-accumulate 
engines

– PE array: 2D array of Pes

– Core: Multiple PE arrays with shared 
memory and special

– Chip: Ring of cores

– System: 2D torus of chips

System Chip
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Custom Compilers
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Programmable Deep Learning Accelerator Systems

§ Each architecture represents a different point in energy vs. throughput trade-off

– Demonstrate impressive peak performance and processing efficiency

– Programmable à Flexibility to execute DNNs of various shapes and sizes

Challenge: 

• How do we program accelerators to achieve best possible system utilization for any given DNN?

• How do we achieve performance without sacrificing end-user (non-expert users) productivity ?

Server-class Systems

DaDianNao[MICRO14]
NeuroCube[ISCA16]
TPU [ISCA17]
ScaleDeep [ISCA17]
………

SCALEDeep	
Node Chip

Tiles
Chip	Cluster

Low-power IP cores

MAPLE [PACT10]
NeuFlow [CVPRW11]   
DianNao [ASPLOS14] 
Eyeriss [ISSCC16]
DANA [PACT15]
Minerva [ISCA16]
Multi-TOPS Core [VLSI18]
……..
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Programming Deep Learning Accelerators

§ DNNs are static dataflow graphs

– No data dependent execution paths, irregular memory access patterns etc.

– Possible to define a space of mapping configurations and identify the best configuration offline
– Performance estimation to reasonable accuracy through analytical analysis

§ DNN functionality can be expressed using small set (tens) of primitives

– For example, VGG11 network contains >10 billion scalar ops, but expressible with 6 functions: Convolution, 
Matrix-multiplication, ReLU, Max pooling, Softmax & Bias-add

– Complexity of how each function is optimally realized is hidden behind library/API calls

§ But, significant heterogeneity in shape and size of each data-structure, which makes each operation 
computationally unique

– Insight: Each layer/op needs to be programmed differently

Layer CONV1 CONV2 … CONV3_2 CONV4_1 … CONV5_2 … FC_7

Feature size 64x
224x224

128x
112x112

256x
56x56

512x
28x28

512x
14x14

4096x
1x1

Ops/By 25.78 372.58 842.51 519.06 180.63 1.00
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DeepTools: Software Stack for AI

Data tr.
Host ⇔
RaPiD

Graph Construction

Graph Execution

Graph Optimization

DNN 
Specification
(Python, …)

DEEP LEARNING FRAMEWORK

PE Array

SFU /  L0-Y

Lx
(2MB SRAM)

clk gen

L0
-X

cn
tlcmu

DEEPRT – COMPILER RUNTIME

CPU

RAPIDLIB –
EXECUTION

RUNTIME

RaPiD AI Core

DMA

RaPiD Ops 

USER INPUT

AI SYSTEM

CPU Ops

RaPiD Graph 

R1

R2

R3

CPU RaPiDData
Opt.

RaPiD 
Graph

For each RaPiD Node 
RapidDSC

Parameters to express computation 
in RaPiD (for code generation)

Hand-optimized 
primitives

Intra-node Optimizations & 

Temporal Work Sequence

DeepMatrix

DeepCodeSmith
Templated Code 

Generation

Graph Parser

Graph

Installer

Dev. Memory

DeepSpatialMatrix
Inter-node Opt. & 

Spatial Work Partition 

Optimized RaPiD Graph 

Data Ops 

Memory & 

Scratchpad 

Management

DeepStateInit

4

5

6

8
79

Initialize DMA 

transaction
Name Prog. Addr.

R1 *p1

R2 *p2

R3 *p3

Node 
Table

Identify program 

address from Node 

table

Launch RaPiD 

Execution

1
2

3

10

11
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§ DSM+DM: A systematic method to map DNNs on to any given accelerator system

–How the compute needs to be partitioned to across processing elements?

–How much data to stage in each memory, respecting capacity constraints?

–How the data movement needs to be orchestrated, given bandwidth limitations?
§ Key steps in DeepSpatialMatrix:

– Defines a “design space configuration” 
• Hierarchical workload mapping across chips, cores, and PE arrays

– Uses analytical model to estimate performance of a given configuration 
• Includes cost for every data-transfer, compute operation at each level

– Includes a design space exploration methodology to identify the performance optimal configuration

DeepSpatialMatrix (DSM) +DeepMatrix (DM) : Mapping DNNs on Accelerators

Workload 
Description

System 
Description

Performance
Summary

Layer/Pass-wise 
Design Config.

Design Space 
Configuration Design Space 

Exploration

Performance 
Estimation DeepSpatialMatrix

Repeat for all layers 
FWD/BWD/UPD
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Design Space Characterization (RapidDsc)

[~100 Parameters]

attr ChipD = <dim tuple>
attr CoreD = <dim tuple>

attr B = <dim tuple>
attr T = <dim tuple>

attr P = <dim tuple>

attr loopOrder = 
<list {stage,dim}>

attr dataStructures = <list
{  attr layout = <dim tuple>
attr dataTransfers = 

<list {src,dst,type,loopLoc}>
}>

Spatial work division 
across chips and cores

Work fed to PE array

Data-staging params 
for 2-level data tiling

Seq. of nested loops: 
#loop stages * #dims 

Info ∀ datastructure:
Memory layout, data-
transfers and their 
source, dst., and 
location within loops 

attr N = <dim tuple> Total workload

attr compPrimitives = <list> Primitive PE/SFP ops. 

§ Spatial Work Division: Defines the work division across cores 
and chips

– Also defines how data is organized in memory and 
scratchpad of different cores

§ Dataflow: Orchestrate compute within PE array

– Data-structure/workload dimension mapped along rows, 
columns and held stationery in register file

– Constrains for valid dataflows

§ Given the dataflow, the overall computation can be expressed 
as a nested sequence of loops

§ Tile Sizes: Defines limits for how data-structures are chunked 
across memory hierarchy levels

§ Loop Order: Determines the order in which each data-
structure is traversed

§ Data-transfer Location: Capacity and reuse of each data-
structure at each level of memory
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Key Optimizations

1. Dataflow selection [Within Core, Within Node]

– The direction we flow the elements of each data-structure (INP, OUT, KER) to PEs

– The dimension of that data-structure that is spatially mapped 

– Input vs. Output vs. Weight stationery…. 

2. Temporal Work Sequence [Within Core, Within Node]

– Define loop structures and tile sizes

– Balance computation with data fetch cost 

– Identify critical data structures and maximize its reuse

3. Operation fusion [Within Core, Across Nodes]

– Fuse successive operations in the computation graph

– Eliminates access to memory

– Eg. Convolution with ReLU and Pooling.

Reg

OUTPUT

INPUT
KERNELin

 

in
 

out 

out 
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Key Optimizations
4. Inter-layer Memory Reuse [Across Cores, Across Nodes]

– Hold output of a node in local scratchpad anticipating reuse in future nodes

– Given finite on-chip capacity, which data-structures to hold and what is its 
impact on overall performance? 

5. Dynamic Spatial Minibatching [Across Cores, Across Nodes]

– Dynamically change working set size (minibatch) layer-wise based on available 
on-chip capacity

6. Type of parallelism [Across Chips, Within Node]

– How work is split work across chips?

– Determines communication between chips 

– Data vs. Model vs. hybrid parallelisms 

Layer i Layer i+1 Layer i+2

Acti

2D-tours w. asymmetric 
bandwidth: X-ring BW > Y-ring BW

Pa
ra

lle
lis

m
 in

 X
-d

ir.
 

Parallelism in Y-dir. 

Data Model

Da
ta

M
od

el

All-Data

X-Ring

Y-Ring
All-Model

ModelXDataY

DataXModelY

ChipDOUT = NOUT
ChipDMB = NMB/MN 
Grad. reduction 
along X & Y

ChipDOUT = NOUT/M
ChipDMB = NMB/N 

Fea. rotation in X
Grad. reduction in Y 

ChipDOUT = NOUT/N
ChipDMB = NMB/M 

Grad. reduction in X
Fea. rotation in Y 

ChipDOUT = NOUT/MN
ChipDMB = NMB

Fea. rotation 
along X & Y

Feature-
heavy 
layers

Weight-
heavy 
layers

All-Model

Preferred Parallelism

All-Data

DataX
ModelY

ModelX
DataY

X

X

X

X

N

M

7. Timestep Pipelining [Across Chips, Across 
Nodes]

– Map multiple layers spatially across the 
system and execute them in pipelined fashion

– Applies to LSTM and seq-to-seq models with 
a timestep dimension
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Configuration Estimation
§ A waveform based approach 

to compute execution cycles 
for a given RapidDsc

– Explicitly accounts for 
each compute iteration, 
overlapped and visible 
data-transfers 

– Components: Compute 
time, overlapped data-
transfer time, non-
overlapped data transfer 
time, auxiliary compute 
time, pipe bubbles

Program
1.	transfer	tOut
2.	for	1	à lc2:	(=	2)
3.				transfer	tKer
4.				transfer	pKer
5.				transfer	tInp
6.				for	1	à lc1:	(=	3)
7.								transfer	pInp
8.								transfer	pOut
9.								compute()

tInp

Ninp,	Nout,	NKer

tOut

PE	Arr.	(PInp,	POut,	PKer)

Link:	Lk2	
Link:	
Lk1	

Link:	Lk3	

Trans. Type Link
pInp Stream. Lk1
POut Stream Lk2
pKer Blk-Load Lk2
tInp Dbl-Buff. Lk3
tOut Dbl-Buff. Lk3
tKer Stream. Lk3

PE-Array

Lk	1

Lk	2

Compute

PInp

POut

PKer

Lk	3

TInp

TOut

TKer

lc2:1
lc1:1

lc2:1
lc1:2

lc2:1
lc1:3

lc2:2
lc1:1

lc2:2
lc1:2

lc2:2
lc1:3

lc2
:1

lc2
:2

Compute	Idles	as	Double-Buff	transfers	(tInp+tOut) dominates	Lk3

Compute	Idles	with	TKer/Pker Block-load	 in	Lk2,	Lk3

Loop	
Iteration

Ex.	Cycles =	(compute-cy	+	dbl-buf-idle-cy)	 *	(L1*L2)	+	blk-ld-idle-cy	*	L2	

Data-transfer	
groups

Total Execution Time = 
MAX (Compute time, 
CommOverlap time) 
+ CommNonOverlap time 
+ Aux ComputeTime 
+ PipeBubble
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Results

§ Architecture: System with 8 PFLOPs (half-precision) 
peak processing power

– 64 chips, 32 cores/chip, 1024 MACs/core

§ Performance model calibrated with measurements 
from fabricated chip at 14nm

§ DeepTools explored over a million mapping 
configurations in <15 mins

System
Params.

Number of Chips 64 {16-256}

Chip 
Params.

Number of Cores 32

Core 
Params.

Num. of MACs (FP16) 1024
Spad Mem. (MB) 1 {0.5-4}

Spad. Bandwidth (GBps) 128 
Frequency (GHz) 2

Chip Topology Ring
Core-to-Core Bandwidth (GBps) 256
External Mem. Capacity (GB) 8 
External Mem. Bandwidth (GBps) 256 @ 80% eff.

System Topology 2D-Torus Chips X,Y: 4, 16{4,64} 

Chip-to-chip Bandwidth (GBps)
Symm. - X: 80 Y: 80; Asymm. -

X: 120 {30-240} Y: 40 {10-80} 

Bold àBaseline configuration; {italics} à Range used for sensitivity studies

§ Benchmark: Heterogenous selection of DNNs

– Convolutional neural networks
• AlexNet, VGG16: Many compute-heavy layers

• ResNet18, Resnet50: Many lean layers that are memory-
bound

– LSTM network 
• GNMT: Very small work per layer per timestep

§ 1.8X-4.1X performance improvement over hand-tuned 
mapping

0
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1

AlexNet VGG16 Resnet18 Resnet50 GNMT GeoMean

Ut
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za
tio

n 

Homogenous DeepTools

2.9X1.8X2.0X 2.8X2.0X
4.1X
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VGG16: Layerwise study
§ DSM+DM automatically modulates how each layer is mapped based on the layer’s characteristics – Initial 

CONV vs. Mid CONV vs. Fully-connected layers

§ Detailed view into performance bottlenecks for each layer

Layer 
FWD/BWD/UPD

Parallelism 
Type

CoreD Split Mem-
Opt

DySM
Factorin out ij mb kij

CONV1_1 Data 32 Y 4
CONV1_2 Data 32 N 4

CONV2_2 Data 2 8 2 Y 4
CONV3_1 Data 4 4 2 Y 4

CONV4_3 Data 8 2 2 Y 4
CONV5_1 Data 8 4 Y 4

FCON1 Model 32 Y 1

FCON2 DataX-
ModelY 4 8 Y 1

FCON3 DataX-
ModelY 32 Y 1
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MAC Compute PE Array Underuse Visible Overlapped Tr.

Non-overlapped Tr. Aux. Compute FWD (& BWD) PASS
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Total: MAC Compute = 73%, PE Array Underuse = 5%, Visible Overlapped 
Transfer = 5%, Non-overlapped Transfer = 16%, Auxiliary Compute = 1%

UPD PASS

Fea./Err. 
Rotation

Compute
Act. Fn

Memory 
Read Inp 
& Write 

Out

FWD/BWD 
Compute-bound layers

Gradient 
Reduction

Feature
Rotation

UPD Compute-bound layers
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Approximate Computing
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Approximate Computing Overview and Techniques

Approximate and error tolerant 
Algorithms 

Approximate and Stochastic Chip 
Architectures 

Approximate and error resilient Circuits 

Approximate and Stochastic Devices 

•  Stochastic Programming 
Models 

•  Real time algorithms 
•  Compilers 

•  Automatic synthesis of 
Approximate and error 

resilient circuits 

•  Modeling of Approximate 
and Stochastic logic and 

memory devices 

Cognitive Application Stacks •  Novel data ingestion 
mechanisms designed for 
stochastic sensory inputs   

Near Term 

Medium Term 

Long Term 

• Large spectrum of cross-stack approximate 
computing techniques available.

• 3 Primary techniques (already) being used 
widely in DL

• Precision:
• Scaled precision for Training and 

Inference
• Maximum bang for the buck (quadratic 

gains in efficiency w. precision)

• Compression:
• Lossy compression to minimize data 

communicated between ASICs for training.

• Synchronization:
• (Mostly) SW techniques to minimize 

synchronization overheads for distributed 
training.
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Algorithmic Approximations for AI

Inference
(beyond INT8)

Fixed-point 
quantization with 

retraining

Custom number 
formats for post 

training quantization

Weight pruning and 
compression

Training   
(beyond FP16)

Custom FP8 
representation

Adaptive gradient 
compression
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Algorithmic Approximations for AI

Inference
(beyond INT8)

Fixed-point 
quantization with 

retraining

Custom number 
formats for post 

training quantization

Weight pruning and 
compression

Training   
(beyond FP16)

Custom FP8 
representation

Adaptive 
gradient 

compression

• Deep learning with limited 
numerical precision, ICML 
2015

• Training deep neural 
networks with 8-bit 
floating point numbers, 
NeurIPS 2018

• Hybrid 8-bit Floating Point 
(HFP8) Training and 
Inference for Deep Neural 
Networks, NeurIPS 2019

• Adacomp: Adaptive 
residual gradient 
compression for data-
parallel distributed 
training, AAAI 2018

• Pact: Parameterized 
clipping activation for 
quantized neural 
networks, arXiv 2018

• Bridging the accuracy 
gap for 2-bit quantized 
neural networks (QNN), 
SysML 2018

• Compensated-DNN: 
energy efficient low-
precision deep neural 
networks by 
compensating 
quantization errors, DAC 
2018

• BiScaled-DNN: Quantizing 
Long-tailed Data 
structures with Two Scale 
Factors for Deep Neural 
Networks, DAC 2019
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Quantized Deep Neural Networks

§ Implement DNN weights and activations using Fixed-Point (FxP) representation

– Number of IB and FB bits determine the range and resolution respectively

– The dynamic range of weights and activations are different for each layer

§ Advantages:

– Smaller ALUs è lead to power and performance benefits

– Smaller memory footprint 
– Smaller data elements è increase data transfer efficiency 

§ Challenge: Invariably suffer from quantization errors, which degrades accuracy 

– Choose the right range and resolution for each data-structure

– Retrain the network considering quantization errors

Sign Bit (SB)
Integer Bits (IB) Fraction Bits (FB)

0.002
0.016
0.125
1.000
8.000
64.000
512.000

4,096.000

(12
,-5
)

(10
,-3
)
(8,
-1) (6,

1)
(4,
3)

(2,
5)

(0,
7)

(-2
,9)

8 bits FxP representations (IB,FB) 

Resolution
Range

High Range
Poor Resolution

Low Range
Good Resolution
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New Techniques for Inference with Hyper-Scaled Precision

Activation Quantization
PArameterized Clipping 

acTivation (PACT)

– Automatic tuning of clipping 
level to balance clipping vs 
quantization error

quantization applied

ResNet block

Full-Prec

Weight Quantization
Statistics Aware Weight Binning 

(SAWB)

– Exploit weight statistics to 
better capture shape of weight

Quantization in the Presence of 
Shortcut Connections

Full-Precision Shortcut

– Enhance gradient-flow of training 
by not quantizing shortcut

𝜶𝒘∗ = 𝒄𝟏 $ 𝑬 𝒘𝟐 − 𝒄𝟐 $ 𝑬 𝒘

!
"#

/!
|"
|

J. Choi et. al (presented at SysML 2019)
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Inference : Challenges in Low Precision Activation Quantization

§ Trade-offs when quantizing activation
– ReLU: Cover large dynamic range (better convergence) è Suffer large quantization error

– Static clipping: Clip outliers (lower quant error) è Accuracy drop due to diminishing gradients

Trade-off between 
Quantization & Clipping Error

70
50
30
10

Quantized

60-80
40-60
20-40

0-20

ReLU
x

ReLU(x)

5.2
3.7
2.2
0.7

Quantized
4.5-6
3-4.5
1.5-3
0-1.5

Static clipping
(e.g., ReLU6)

x

Clip(x)
6

CIFAR10 ResNet20: ReLU vs Clipping 
when quantizing activation

with 
quantization

w/o quantization

Hard to find sweet spot è Automatic tuning via training!

J. Choi et. al (presented at SysML 2019)
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Activation Quantization : PArameterized Clipping acTivation (PACT)

§ Clipping level (= 𝜶) as a trainable parameter à Auto-tuned by Backprop

– 𝜶 is initialized with large value to emulate ReLU in the beginning

–L2-regularization on 𝜶è Converges to low magnitude to reduce quantization error
§ Ex: CIFAR10-ResNet20 with PACT

– PACT automatically finds the best clipping level without expensive sweeping over 𝜶
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9.5%

10.0%

10.5%

11.0%

11.5%

1 4 7 10 13 16

Va
lid

at
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n 
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ro
r

Clipping level (ɑ)

Clip-A2

PACT-A2

J. Choi et. al (presented at SysML 2019)
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Inference : Challenges in Low Precision Weight Quantization

§ Objective: Find a good quantization scale (𝜶𝒘)
– Assumption: symmetric distribution (usually true...), 

Uniform quantization (for simple HW)

– Given a quantization scale, quantized weights are exclusively 
determined

– Goal: find 𝜶𝒘 that minimizes quantization error

§ Previous approach: Find 𝜶𝒘 with respect to 𝑬 𝑾
– E.g., XNOR-Net, Ternary-Weight-Quant, etc.,

– Pros: Simple (sometimes with analytic solution)

– Cons: 𝐸 𝑊 is not enough to capture shape of W

Ex: XNOR-Net (Rastegari et al., 2016)
𝛼"-𝛼"

𝑛#$% = 4

Need an analytic solution that 
better characterizes weight distribution

J. Choi et. al (presented at SysML 2019)
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Weight Quantization : Statistics Aware Weight Binning (SAWB) 

§ How to better capture shape of weight?

– 𝑬 𝑾 captures the representative values

– 𝑬 𝑾𝟐 captures the overall shape 

– Use 𝑬 𝑾 and 𝑬 𝑾𝟐 for finding best 𝜶𝒘?

§ Verification:

– Take 6 representative distributions with varying 
variance: Gaussian, Uniform, Triangle, Laplace, 
Logistic, Von mises

– Sweep over 𝜶𝒘 to find one with smallest MSE(W-Wq)

– Linear regression to find relationship among 𝛼"∗ , 
𝐸 𝑊 and 𝐸 𝑊(

𝜶𝒘∗ = 𝒄𝟏 $ 𝑬 𝒘𝟐 − 𝒄𝟐 $ 𝑬 𝒘

!
"#

/!
|"
|

Logistic

Gaussian Uniform

Laplace

Triangle

Von mises

𝜶𝒘∗ = 𝒄𝟏 % 𝑬 𝒘𝟐 − 𝒄𝟐 % 𝑬 𝒘

Observation: 𝜶𝒘∗ is characterized by 𝑬 𝑾 and 
𝑬 𝑾𝟐 è Analytic solution to find the best scale

J. Choi et. al (presented at SysML 2019)
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Full Precision Short-Cut for Inference (FPSC)

§ Observation: ResNet is more sensitive to quant-error than VGG-like networks

– Short-cut in ResNet helps gradients to flow à Quantization on shortcut hinders training

§ Full-Prec Short-Cut: Avoid quantization at input activation and weight in short-cut

– Short-cut involves small weights à Full-Prec does not harm performance (<1% ResNet18)

– FPSC allows larger magnitude gradients à Improved gradient flow

ResNet block

QNN training: VGG vs ResNet

Improved gradient 
flow by FPSC

0%
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VGG: Full-Precision
VGG: W/A 2-bit
ResNet20: Full-Precision
ResNet20: W/A 2-bit

quantization applied

Full-Prec

J. Choi et. al (presented at SysML 2019)
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Hyper-Scaled Precision : Inference Accuracies on Models

CIFAR10 Dataset ImageNet Dataset

Accuracy 
higher 
than prior 
workLowest 

accuracy 
degradation

J. Choi et. al (presented at SysML 2019)`

No loss of accuracy for 4-bit Inference
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Training Challenges Beyond FP16

FP8 Representation FP16 Accumulation Update

• State of the art Training systems use FP16 for data representations and FP32 for accumulations & 
weight updates. 

• Challenge: To reduce these precisions down to FP8 for representation and FP16 for accumulation & 
weight updates.  

• Goal: Increase training-performance by 4X over today’s systems!

N. Wang et. al (presented at NeurIPS 2018)
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FP8 Training : FP8 Data Representation

§ First layer and last layers are very sensitive to lower-precision (FP8) –
especially for image processing (keep them in FP16).

§ Input to softmax is sensitive to low-precision : possible to keep last layer in 
FP8 but outputs need to be preserved in FP16. 

N. Wang et. al (NeurIPS 2018), and X. Sun et. al (NeurIPS 2019)
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FP8 Training : Hybrid FP8 Data Representation

§ Multiple FP8 formats investigated

§ FWD FP 1-4-3 and BWD FP 1-5-2 (sign-exponent-mantissa)

§ FP 1-4-3 has an exponent bias of 4 to cover small numbers, [2-11, 30]

N. Wang et. al (NeurIPS 2018), and X. Sun et. al (NeurIPS 2019)



44

FP8 Training : FP16 Accumulations

§ Identified low-precision swamping as the key challenge with FP16 accumulations 
(current state of the art is FP32 accumulations). 

– Floating point addition involves right-shift of the smaller operands by the difference in exponents. In case of large-to-
small number addition, small numbers maybe partially or completely truncated causing information loss.

§ Chunk-based accumulations (Hierarchical accumulations) fix this problem.
– Enables FP16 accumulation (may need hardware support)

N. Wang et. al (NeurIPS 2018), and X. Sun et. al (NeurIPS 2019)
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FP8 Training Results

• Combination of selective FP8 precisions, chunk-based accumulations and stochastic weight 
updates enable baseline accuracies with FP8 Training for a wide variety of neural networks.

N. Wang et. al (NeurIPS 2018), and X. Sun et. al (NeurIPS 2019)
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Summary

§ AI workloads have revolutionized application landscape

– Enabled new apps and services

– Impose extreme computational challenges

§ Need to rethink computing stack to boost efficiency of AI workloads

§ 3 key ingredients to building an efficient AI system:

– Hardware Accelerators: Specialized computing systems for AI

– Custom Compilers: Software stack to extract efficiency without 
sacrificing end-user productivity 

– Approximate Computing: Leverage resiliency to approximate 
computations to benefit efficiency

§ Many exciting opportunities for the future as workloads continue to 
grow and evolve!

AI Efficiency

Custom 
Compilers

Hardware 
Accelerators

Approximate 
Computing
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