tinyML. Summit

March 28-30, 2022 | San Francisco Bay Area

e

www.tinyML.org

®

Mastering the 3 Pillars of Al Acceleration: Algorithms,
Hardware and Software

Swagath Venkataramani
IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
TinyML Summit 2022

IR

IBM Confidential © 2014 1BM Corporation

2

The evolution of Al; Past, Present and Future

Narrow Al General Al

Single task, single domain Cross-domain

Superhuman accuracy and learning and reasoning

speed for certain tasks Broad autonomy

3 IBM Confidential © 2014 IBM Corporation

The path to Broad Al

®

Scaling Al
Novel technologies
across the full
computing stack that
make Al faster, easier,
and able to scale to
larger and more
complex problems. -

Focus of this talk

IBM Confidential

Advancing Al
Powering advances in
perception, reasoning
and understanding to
help Al address
complex human-like
tasks.

Trusting Al

Novel techniques to
instrument key
dimensions of trust
and enable Al
solutions that inspire
confidence.

© 2014 1BM Corporation

Deep Learning (DL) Training and Inference Use Cases EESS,

* Model Training Nvidia DGX N
— Typu:a”y On_pr\em ’ e 1 - ; +—— NVLink Plane Card
— Customized GPU / ASIC Cluster of > 16 chips \ N s \‘* A BxEDRIB/O0GIGE
— Days-weeks to train DL models ¢ T~ e
n Sepvep |nfe|~e"ce 1.5TB System Memory
) 30TB NVMESSDs * PCle Switch Complex
— Most cases allow some form of batching [i.e. latency insensitive]
— Currently CPU dominated - transitioning to PCle attached accelerators s L g
. B 3 Self Driving Car g™ &
= Transactional Inference R o —u— o 2

— Extremely latency sensitive - difficult to batch DL jobs.
— Use cases : Financial industry, insurance,....

— PCle attached and on-CPU chip accelerators
= Autonomous Driving (Latency sensitive)
— Largely focused around image, LIDAR / other sensor processing & fusion
— Accuracy is extremely important
— Huge # of Ops and extremely latency sensitive = customized SoCs
= Inference on Mobile / loT devices

— Security, Mobile, Home Appliances. Drones,....

— Deep Learning based Object detection, Image Classification, Translation
— Slightly lower accuracy tolerable

5 IBM Confidential © 2014 IBM Corporation

Deep Learning System Bottlenecks EEEE
Deep Learning Training

()
Test Server Parameter Server Group
Status Server | aw
ffff\:?f:::ii::::"
E ibdnn.a
E Learner1 Learner2 LearnerAgent N
: | e | = R A
E minibatche'\ \
. ’[Distributed File System (GPFS)])
= Large system training : = Typically single-chip (board) solution
— Multiple 300W GPUs/ASICs connected on a node [using — 75W PCle attached
proprietary links) + Multiple Nodes connected via Infiniband — Virtualization (multi-thread /multi-process /
multi-VM) support critical
= Training Bottlenecks:
— Computation: Minibatch SGD * Inference Bottlenecks:
« Peak GPU / ASIC Flops capability — Computation bottlenecks:
* Utilization : Typical GPU utilization ~ 10 - 35% - depends on minibatch » Peak GPU / ASIC Flops capability.
size (higher the better] - limited by memory bandwidth! « Utilization : Typically higher than training since fewer
— Communication: Different synchronization schemes possible tensors — but still limited by memory bandwidth
« Overheads depend on superminibatch size and # of learners but limited by — No communication bottlenecks.

5 DL convergence - limited by %E%-gemgl bandwidth. « Multi-chip inference not common © 2014 IBM Corporation

Al System Design: Ingredients

Compute Platforms

specialized to execute
Al workloads efficiently

Software stacks for Al
to maximize efficiency
and easy
programmability

\

Hardware Approximate ’
Accelerators Computing

Custom
Compilers

Leverage resiliency of
Al workloads to

approximate selected
computations and
benefit efficiency

Al System Design: Ingredients

3) @

Training:

* 'Ascalable multitera ops deep * Deep learning with limited numerical

learning processor core for Al precision, ICML 2015
Ersining Eme Inisrenee, WLsl 2U1E _ « Adacomp: Adaptive residual gradient
* "DLFloat: A 16-b Floating Point Hardware Approximate compression for data-parallel

format designed for Deep Learning N C i distributed training, AAAI 2018
ne ; ccelerators omputing istributed training,
Training and Inference”, ARITH « Training deep neural networks with

=Ute 8-bit floating point numbers, NeurlPS
d J 2018
* Hybrid 8-bit Floating Point (HFP8])
Q Training and Inference for Deep
« “DeepTools: Compiler and Execution Runtime Custom Neural Networks, NeurlPS 2013
Extensions for RaPiD Al Accelerator”, IEEE Compilers Inference:
MICRO 20189 * Pact: Parameterized clipping

activation for quantized neural
networks, arXiv 2018

* Bridging the accuracy gap for 2-bit
qguantized neural networks (ANN],
SysML 2018

* Compensated-DNN: energy efficient
low-precision deep neural networks

* Performance-driven Programming of Multi-
TFLOP Deep Learning Accelerators, IISWC 2019

* Design Space Exploration for Performance
Optimization of Deep Neural Networks on Shared
Memory Accelerators, PACT 2017

* "Memory and Interconnect Optimizations for
Peta-Scale Deep Learning Systems”, HIPC 2019

* A Compiler for Deep Neural Network by compensating quantization errors,
Accelerators to Generate Optimized Code for a DAC 2018
Wide Range of Data Parameters from a Hand- * BiScaled-DNN: Quantizing Long-tailed
crafted Computation Kernel, COOLCHIPS 2019 Data structures with Two Scale

J Factors for Deep Neural Networks,

DAC 20189

Hardware Accelerators

Deep Learning (DL) Accelerator: Hardware Design Principles

1. End-to-end performance
—Parallel computation, high utilization, high data bandwidth

—Support minibatch sizes down to as low (1 if possible]
 Useful for transactional inference and extremely scaled training use cases.

2. DL model accuracy

—DL operations require a mix of various precisions (fp32, fp16, .. INT2)

—Design optimized for mixed-precision processing engines

» Support for higher precision reduces efficiency of low-precision hardware

3. Power efficiency

— It's an accelerator: application power should be dominated by compute elements
4. Flexibility and programmability

— Support dataflow diversity and development of future algorithms

— Architecturally maximize on-chip reuse: Access to data is as important as compute
9. Scalability

— Single-core vs. Multi-core approach
— Effective core-to-core and chip-to-chip commmunication

10

Workload Profiling

= Op count is dominated by matrix operations and a small set of other functions
— Convolution/Matrix multiplication
— Vector operations: Point-wise functions with /without reduction

= All functions are highly parallelizable

Speech__ T I LT 0 T EEEEEEEEEE———————————————————
(RNN) Char e |
Language__ B e e s e e |
(DNN) L\lat Lang | e R e e |
Vision__ VGG I —————
(RININ) | Al X N 1 w1
) 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

HMgemm M lowering B softmax B rnorml rnorm2
M calcError tanh tanhGrad sigmoid sigmoidGrad
M axpy saturate W relu reluGrad B matrix assign

11

RaPiD: 14nm 1.5 GHz DL accelerator core

= Many highly tuned fp pipelines and high bandwidth throughout
[Performance]

— Customized dataflow architectures

— Algorithm /program /I1SA /hardware co-designed specifically for DL
workloads

= Balanced multiple-precision support [Accuracy]

— Precision chosen for each computation, for training and inference
= Simplify logic in and around compute pipelines [Power]

— Carefully curated ISAs

— Streamlined contral logic

— PEs use > 80% of power
= |[SA-accessible communications network [Programmability/Scalability]

. Peak performance of 1.5 TFLOPS fp16, 12 TOPS ternary and 25 TOPS binary
. Sustained utilization >90% on multiple neural-network topologies
. Core in+out bandwidth of 36+96 GB/'s for scalability

12 A scalable multi-teraops deep learning processor core for Al training and inference, Fleischer et al, VLS| 201 8. 12

RaPiD Core Microarchitecture

2-D compute arraly_(torlljg)_ = Dataflow with scratchpad hierarchy

6
?
e

i T o P

= Customized dataflow architecture — hybrid SIMD-Dataflow vs.
traditional Dataflow

» Reduced-precision based PEs (Processing Elements) for matrix /

convolution ops
— Support for precisions down to 2-bits (FP16 / FP8 / INT4 / INT2)
— Minimum accumulation precision (HW chunking techniques for ALUs)

' % = Limited FP32 SFUs (Special Function Units)

for vector (linear/non-linear) ops
— Needed primarily for softmax, batchnorm and axpy for training

= Directly-addressable multi-level scratchpads (Software
managed) for high utilization (core efficiency)

A SR <> cmu = Double-buffering in Lx and high bandwidth between Lx-LO-

I Core I/O I compute

13 A scalable multi-teraops deep learning processor core for Al training and inference, Fleischer et al, VLSI 201 8.

ISA features

Features to support algorithm variations and future development

Softmakx,... Tanh,... RelLU, Poal,...
Matrix : Vector functions with : Simple vector
Nat
multiply convao:\lj(taion reduction Vector functions functions
Estimate ops
FP16 dataflow for FP16 and FP32
FMA operands from

Independent matrix

data flowing H/V and vector programs

and in local regs

Special-purpose Native support for Single-instruction
data movement ops reduction Relu, etc.

14 A scalable multi-teraops deep learning processor core for Al training and inference, Fleischer et al, VLS| 201 8.

Flexibility

Implement one
algorithm with
different
precisions

Dataflow
mapping by ISA

Peta-Scale Deep Learning System

= Customized server class system for
training deep learning models

= 5 tiered hierarchy

— PE: SIMD multiply-and-accumulate
engines

— PE array: 2D array of Pes

— Core: Multiple PE arrays with shared
memory and special

— Chip: Ring of cores
— System: 2D torus of chips

15

-
-
-

Reg.
File
e

®
ACC
MAC

S
<
S,
S
<

Units

PE

i
AY
Ay
AY
AY
Ay
AY
AY
\
\
AY
d
Ay
Ay
‘\
. \
LY
° \
L[] AY
° AY
L]
L]
[]

7

External Memory

.
FIFO)4 &
4

FIFO)1~

PE Array

16

Custom Compilers

Programmable Deep Learning Accelerator Systems

A
v

Low-power IP cores Server-class Systems

192 + 192 GB/s R+W

!

2MB Lx Scratchpad SR TTETT L 5
192 + 192 GB/s R+W Chip Cluster

| coreno !

o MAPLE [PACT10] DaDianNao[MICRO14]
£ B B8N NeuFiow [CVPRW11] NeuroCube[ISCA1 6]
@ - “@ﬁW DianNao [ASPLOS14] TPU [ISCA17]
'ég t t t t Eyeriss [ISSCC16] ScaleDeep [ISCA17]
@8 - -BBy panA[PACTIS] e
| # @ @ Minerva [ISCA1 6] =
s Lo semven Multi-TOPS Core [VLSI18] scatsoeey e

» Each architecture represents a different point in energy vs. throughput trade-off
— Demonstrate impressive peak performance and processing efficiency
— Programmable > Flexibility to execute DNNs of various shapes and sizes

Challenge:

* How do we program accelerators to achieve best possible system utilization for any given DNN?

* How do we achieve performance without sacrificing end-user [non-expert users) productivity ?
\, v

17

Programming Deep Learning Accelerators

* DNINs are static dataflow graphs
— No data dependent execution paths, irregular memory access patterns etc.
— Possible to define a space of mapping configurations and identify the best configuration o/fline
— Performance estimation to reasonable accuracy through analytical analysis

= DNIN functionality can be expressed using small set (tens) of primitives

— For example, VGG11 network contains >10 billion scalar ops, but expressible with 6 functions: Convolution,
Matrix--multiplication, ReLU, Max pooling, Softmax & Bias-add

— Complexity of how each function is optimally realized is hidden behind library/API calls

= But, significant heterogeneity in shape and size of each data-structure, which makes each operation
computationally unique

™ Layer | CONVI | CONV2 | .| GONV3_2 | GONVA_ | .| GONVS.2 || FG_1

Feature size 64x 128x 256x 512x 512x 4096x
224x224 112x112 56x56 28x28 14x14 1x1
Ops/By 25.78 842.51 1.00

— Insight: Each layer/op needs to be programmed differently

18

DeepTools: Software Stack for Al

19

DEEPRT — COMPILER RUNTIME

USER INPUT DEeP LEARNING FRAMEWORK
,] ++
@ DNN "F O
Specification 2
(Python, ...) N Graph Construction
3 . . .
Al SYSTEM Graph Optimization

cpu Data RaPiD

-
e
7

»

L

Graph Parser

]

(6

[RaPiD Graph)

A 4

DeepSpatialMatrix

v

Inter-node Opt. &
Spatial Work Partition

.

Data tr.
Host <

.

Upt.
RaPiD
Graph

o™

—@—RD

@

Graph Execution

A

Graph
Installer

7]

v

Optimized RaPiD Graph H

-
-
.
y 3

DeepStatelnit

Memory &
Scratchpad

Management

DeepMatrix

Intra-node Optimizations &

Temporal Work Sequence
A

v

R

" For each RaPiD Node

RapidDSC

Parameters to express computation
in RaPiD (for code generation)

DeepCodeSmith

i
v

Templated Code <1
Generation

Hand-optimiz
primitives

ej

RaPiD Al Core

. Data Ops RaPiD Ops
ﬁnitialize DMA Launch RaPiD)
L transaction Execution
Identify program N
address from Node
table)

R1 *pl
R2 *p2
R3 *p3

Table

4

RAPIDLIB —
EXECUTION
RUNTIME

DeepSpatialMatrix (DSM) +DeepMatrix (DM) : Mapping DNNs on Accelerators

= DSM+DM: A systematic method to map DNINs on to any given accelerator system
—How the compute needs to be partitioned to across processing elements?
—How much data to stage in each memory, respecting capacity constraints?

—How the data movement needs to be orchestrated, given bandwidth limitations?
= Key steps in DeepSpatialMatrix:
— Defines a “"design space configuration”
* Hierarchical workload mapping across chips, cores, and PE arrays
— Uses analytical model to estimate performance of a given configuration
* Includes cost for every data-transfer, compute operation at each level
—Includes a design space exploration methodology to identify the performance optimal configuration

’ Repeat for all layers
Workload Design Space J;FWD/ BWD< UPD Layer/Pass-wise
Description 7 Configuration Design Space Design Config.
l Exploration

Perf / W Performance
System er o.rmar.mce L) Summary
Description f Estimation

20

Design Space Characterization [RapidDsc])

= Spatial Work Division: Defines the work division across cores

and chips S y[~100 Parameters]
— Also defines how data is organized in memory and attr N = <dim tuple> Total workload
scratchpad of different cores o attr ChipD = <dim tuple> | spatial work division
= Dataflow: Orchestrate compute within PE array attr CoreD = <dim tuple> | across chips and cores
— Data-structure /workload dimension mapped along rows, :
. : . : attr P = <dim tuple> Work fed to PE array
columns and held stationery in register file
— Constrains for valid dataflows attr B = <dim tuple> Data-staging params
attr T = <dim tuple> for 2-level data tiling
= Given the dataflow, the overall computation can be expressed I g
as a nested sequence of loops attr OOPOr er = | Seq. of nested /oops.
<list {stage,dim}> #loop stages * #dims

Tile Sizes: Defines limits for how data-structures are chunked attr dataStructures = <list | Info Vdatastructure:

across memory hierarchy levels { attr layout = <dim tuple> | Memory layout, data-

= Loop Order: Determines the order in which each data- attr dataTransfers = transfers and their

structure is traversed <list {src,dst,type,loopLoc}> | source, dst., and
1> location within loops

] - ion: i -
Data-transfer Location: Capacity and reuse of each data attr compPrimitives = <list>| Primitive PE/SFP ops.
structure at each level of memory C y,

21

Key Optimizations

1. Dataflow selection [Within Core, Within Node]

— The direction we flow the elements of each data-structure (INP, OUT, KER] to PEs

— The dimension of that data-structure that is spatially mapped

— Input vs. Output vs. Weight stationery....

2. Temporal Work Sequence [Within Core, Within Node]
— Define loop structures and tile sizes
— Balance computation with data fetch cost
— Identify critical data structures and maximize its reuse

3. Operation fusion [Within Core, Across Nodes]
— Fuse successive operations in the computation graph
— Eliminates access to memory
— Eg. Convolution with ReLU and Pooling.

22 IBM Confidential

Swap
Loop
Order

| out
[|
- E, ,Out
{ Reg
< XX}
i
» .
= ::!QE“QF“E%E: PP
INPUT
. N .
° . ®e °
- Bg g 8¢
fa)
Convolutional layer
1. for 1 to Din/Bin 17. transfer tKer
/g,forlixswotm/Bop 18. transfer pKer
3. transfer XInp 19. transfer tOut
4. for 1 to Dij/Bij 20. compute Act/Samp
5. for 1 to Dkij/Bkij 21. for 1to Tin/Pin
transfer XKer 22. for 1to Tout/Pop
7 for 1 to Dmb/Bmb 23. transfer tinp
8. transfer bKer 24, for 1 to Tij/Pij
9. for 1 to Bin/Tin 25. for 1 to Tkij/Pkij
10. for 1 to Bout/Top 26. for 1 to Tmb/Pmb
11. transfer XOut 27. transfer plnp
12. transfer bOut 28. transfer pOut
13. for 1 to Bij/Tij 29. compute P
14. for 1 to Bkij/Tki
15. Locate transfer binp
16. data for 1toBmb/Tmb
@ transfers Y, © 2014 IBM Corporation

Key Optimizations

4.

Inter-layer Memory Reuse [Across Cores, Across Nodes]

Hold output of a node in local scratchpad anticipating reuse in future nodes
Given finite on-chip capacity, which data-structures to hold and what is its
impact on overall performance?

Dynamic Spatial Minibatching [Across Cores, Across Nodes]

— Dynamically change working set size (minibatch] layer-wise based on available
on-chip capacity

Type of parallelism [Across Chips, Within Node] - M >

— How work is split work across chips? . e {om.....pm
— Determines communication between chips

— Data vs. Model vs. hybrid parallelisms N Ay =
Timestep Pipelining [Across Chips, Across : éY_ng
Nodes] | g ¥Fing o |
— Map multiple layers spatially across the | |]

2D-tours w. asymmetric

system and execute them in pipelined fashion
bandwidth: X-ring BW > Y-ring BW

— Applies to LSTM and seg-to-seq models with
a timestep dimension

23 IBM Confidential

Data

Model

Act;
Layer i Layer i+1 Layer i+2
Data Model
All-Data ModelXDataY | 5
ChipDoyr = Nour ChipDoyr = Noyi/M >é
ChipDyg= Nye/MN | ChipDyg = Nye/N s
Grad. reduction Fea. rotation in X %
along X &Y Grad. reductioninY S
o
S
DataXModelY All-Model Q
ChipDgyr= Noyi/N | ChipDoyr= Noyr/MN
ChipDMB= NMB/M ChipDMB= NMB
Grad. reduction in X Fea. rotation
Fea. rotationinY along X &Y

Y Parallelism in Y-dir.

© 2014 1BM Corporation

Configuration Estimation

24

A waveform based approach
to compute execution cycles
for a given RapidDsc

— Explicitly accounts for
each compute iteration,
overlapped and visible
data-transfers

— Components: Compute
time, overlapped data-
transfer time, non-
overlapped data transfer
time, auxiliary compute
time, pipe bubbles

Total Execution Time =
MAX (Compute time,
CommOverlap time)

+ CommNonQOverlap time

+ Aux ComputeTime
+ PipeBubble

IBM Confidential

S —
program
Link: Lk3 1. transfer tOut plnp | Stream. | Lkl
2. 1-2Ic2: (=2
o Rl POt | Stream | Lk2
— — > 4. transfer pKer pKer |Blk-Load| Lk2
W 5. transfer tinp
] 7. transfer plnp _
Lk1 Link: Lk2 I 3 transfer pOut tOut |Dbl-Buff. Lk3
[PE Arr. (PInp, POut, PKer)] a 9. compute() tKer | Stream. | Lk3

(@

% Trans. Type Link

Compute Idles as Double-Buff transfers (tinp+tOut) dominates Lk3

Data-transfer

1 groups
Loop / lc2:1 § lc2:1 ilc2} Ic2:2 lc2:2 lc2:2
Iteration : Ic1:3 | 2 lc1:1 lc1:2 lc1:3 f Compute\
PE-Array i % Plnp
- Compute Idles with TKer/Pker Block- POut
0 OO0 %%, 7% %%, 77 per |
1| T Uik vk Dk % 2%, R
. TKer
| TOut
2N 2%
22 ZAIZMI»

© 2014 1BM Corporation

Results

* Architecture: System with 8 PFLOPs (half-precision)
peak processing power

— B4 chips, 32 cores/ chip, 1024 MACs/ core

» Performance model calibrated with measurements
from fabricated chip at 14nm

* DeepTools explored over a million mapping
configurations in <15 mins

* Benchmark: Heterogenous selection of DNINIs

— Convolutional neural networks
* AlexNet, VGG16: Many compute-heavy layers

* ResNet18, Resnetd0: Many lean layers that are memory-
bound

— LSTM network
* GNMT: Very small work per layer per timestep

= 1.8X-4.1X performance improvement over hand-tuned
mapping

25 IBM Confidential

Bold > Baseline configuration; {italics} = Range used for sensitivity studies

Number of Chips 64 {16-256}
Number of Cores 32
Num. of MACs (FP16) 1024
Spad Mem. (MB) 1{0.5-4}

Spad. Bandwidth (GBps) | 128

Frequency (GHz) 2
System - -
Params. Chip Topology Ring
Core-to-Core Bandwidth (GBps) 256
External Mem. Capacity (GB) 8
External Mem. Bandwidth (GBps) 256 @ 80% eff.
System Topology 2D-Torus Chips X,Y: 4, 16{4,64}
. . . Symm. - X: 80 Y: 80; Asymm. -
Chip-to-chip Bandwidth (GBps) X: 120 {30-240} Y: 40 {10-80}
1
m Homogenous DeepTools
0.8
5 2.0X 1.8X
S 0.6 ' ' 2.8X 2.9X
@ 2.0X
s 0.4 4.1X
>
0 I ||

AlexNet VGG16 Resnetl8 Resnet50 GNMT GeoMean

© 2014 1BM Corporation

VGG16: Layerwise study EE=E

R

= DSM+DM automatically modulates how each layer is mapped based on the layer’s characteristics - Initial
CONYV vs. Mid CONYV vs. Fully-connected layers

* Detailed view into performance bottlenecks for each layer

m MAC Compute m PE Array Underuse Visible Overlapped Tr.
Non-overlapped Tr. ® Aux. Compute
Layer Parallelism CoreD Split COAr\r;/:ulf; F:’ - .p FWD (& BWD) PASS
FWD/BWD/UPD Type in kij ' ‘? = £
CONVA_1 Data Memory < _ |
CONV1_2 Data Read Inp FWD/BWD Fea./Err
& Write ¢ 0.4 Rotation
out S Compute-bound layers
©
N 0.2
CONV2 2 Data =
- : THHHHT
CONV3_1 Data 4 ° v @ o
b I T T T N T R D T T S S AR
RN R VR VR YR Y AR YR A AR AR YA YR X (JO (JO (JO
S (9§\ (9\\ c°§\ o°§\ o°§\ c°§\ c°§\ (9\\ (9\\ c°§\ c,o\\ c,o\\ ¢ UPT) P;SS
CONV4_3 Data 1 —
— |] |
CONV5_1 Data 8 18l I
0.8 Gradient
S o6 Reduction
FCON1 Model g
E 0.4 || Feature
DataX- .
FCON2 ModelY 4 > Rotation
0.2 \\/I UPD Compute-bound layers
DataX-
FCON3 aa 0 b=
ModelY > O O
FTNN2 Y Y Y Y Y Y Y Y Yy
<<(’ <((/ ‘((’ A<z>/ A<z>/ A<z>/ Ab‘/ Ab‘/ Ab‘/ Q’b/ Q’b/ Q"1)/ A’],/ A’],/ Q'\/ Q'\/

SRS S &S &S
T T T T TTFTTSFT TS S

Total: MAC Compute = 73%, PE Array Underuse = 5%, Visible Overlapped
Transfer = 5%, Non-overlapped Transfer = 16%, Auxiliary Compute = 1%

26 IBM Confidential © 2014 IBM Corporation

27

Approximate Computing

Approximate Computing Overview and Techniques

Cognitive Application Stacks * Novel data ingestion

mechanisms designed for
stochastic sensory inputs

Approximate and error tolerant

* Stochastic Programmin
Algorithms ’ ’

Models
L * Real time algorithms

* Compilers
Approximate and Stochastic Chip >

Archicectures * Automatic synthesis of
\ Approximate and error
resilient circuits

Approximate and error resilient Circuits >

28

v

Near Term

Medium Term

Long Term

Large spectrum of cross-stack approximate
computing techniques available.

3 Primary techniques (already) being used

widely in DL

Precision:
« Scaled precision for Training and
Inference
« Maximum bang for the buck (quadratic
gains in efficiency w. precision)

Compression:
* Lossy compression to minimize data
communicated between ASICs for training.

Synchronization:
« (Mostly) SW techniques to minimize
synchronization overheads for distributed
training.

Algorithmic Approximations for Al

29

.

[beyond INTE]

Inference

Fixed-point
guantization with
retraining

J

Custom number
formats for post

training quantization

\

Training
[beyond FP16]

(N

Custom FP8

representation

\ J

(N

Adaptive gradient

J

Weight pruning and
compression

compression

Algorithmic Approximations for Al

Pact: Parameterized
clipping activation for
quantized neural
networks, arXiv 2018
Bridging the accuracy
gap for 2-bit quantized
neural networks (QANN],
SysML 2018

Compensated-DNN:
energy efficient low-
precision deep neural
networks by
compensating
quantization errors, DAC
2018

BiScaled-DNN: Quantizing
Long-tailed Data
structures with Two Scale

Factors for Deep Neural
Networks, DAC 2019

30

()
Inference
[beyond INTE]
_ J
Fixed-point)
guantization with
retraining

J

Custom number

formats for post

training quantization

[beyond FP16]

Training

J

Weight pruning and

compression

.

Custom FP8
representation

J

\,

Adaptive
gradient
compression

Deep learning with limited
numerical precision, ICML
2015

Training deep neural
networks with 8-bit
floating point numbers,
NeurlPS 2018

Hybrid 8-bit Floating Point
(HFP8]) Training and
Inference for Deep Neural
Networks, NeurlPS 2019

Adacomp: Adaptive
residual gradient
compression for data-
parallel distributed
training, AAAI 2018

Algorithmic Approximations for Al

31

f) 4
Inference Training
[beyond INTS] (beyond FP16]
_) .
Fixed-point Custom FP8
guantization with representation

retraining

Custom number

formats for post
training quantization

J

Weight pruning and

compression

Adaptive gradient

compression

\

Quantized Deep Neural Networks

* Implement DNIN weights and activations using Fixed-Point (FxP) representation

4,096.000

(IB) (FB) 512.000
(SB) 64.000

8.000
1.000
0.125
0.016
0.002

—o—Resolution
—m-Range

— Number of IB and B bits determine the and respectively SR DD A S A 6
. : . . : RS SR AN AN AN R
— The dynamic range of weights and activations are different for each layer NG N
i 8 bits FxP representations (I1B,FB)
. High Range :C Low Range
" Advantages: Poor Resolution Good Resolution

—Smaller ALUs =» lead to power and performance benefits
— Smaller memory footprint
— Smaller data elements =» increase data transfer efficiency

» Challenge: Invariably suffer from quantization errors, which degrades accuracy
— Choose the right range and resolution for each data-structure
— Retrain the network considering quantization errors

32

New Techniques for Inference with Hyper-Scaled Precision

Activation Quantization Weight Quantization Quantization in the Presence of
PArameterized Clipping Statistics Aware Weight Binning Shortcut Connections
acTivation (PACT) (SAWB) Full-Precision Shortcut
— Automatic tuning of clipping — Exploit weight statistics to — Enhance gradient-flow of training
level to balance clipping vs better capture shape of weight by not quantizing shortcut

guantization error

number of quanitzation levels: 4

quantization applied

0.25 — —mese-clipping — 0.20

c
e Ke) ® Gaussian (0,1)
a0 mse-quantization] 140 - : X
g 5 o et —
= T 015 c 135 Logistic (0,1) weight layer
o S e Triangle [-2,0,2]
‘L})'_I 015 T - d' EIBO- Von mises (0,4) .F(X) $ X
T 0. w = ight | . .
-% 010 = S 5125 weight layer identity
[
N o e
N 1 @ = Full-Prec
= os | 0.05 % . F(x) + x
£ ©
S . £
z 0.00 LI s e e R B 0.00 & 115 4 ResNet block
Z T T T T T T T T T
1 4 7 10 13 16 15 16 17 18 19 20 21 22 23
Clippinglevel (a) a) E(|w])

ay, = c1-VEW?) — ¢z - E(Jw])

33 J. Choi et. al (presented at SysML 2019)

Inference : Challenges in Low Precision Activation Quantization

* Trade-offs when quantizing activation

— ReLU: Cover /arge dynamic range (better convergence) =» Suffer large quantization error

— Static clipping: Cljp outliers [lower quant error) = Accuracy drop due to diminishing gradients

ReLU(x)
¢ ReLU Quantized
X

60-80 ——— 70
40-60 —— 50
20-40 pomsm 30

0-20 s 10

Quantized

" 4.5-6 mmmmmm 5.2
3-4.5 m—— 37
0-1.5 e

6 Clipk) “gpatic clipping
- (e.g.’ ReLU6)
X

34

Trade-off between CIFAR10 ResNet20: ReLU vs Clipping
Quantization & Clipping Error when quantizing activation
= ErrClip; . c 10°
oo 0:25 ErrQuant; tial 2 Hﬁ//,w\,wwuw_w_,
©
5. - e / i -
g 0.20 1 o1s 2 B, . ~ with i
o - quantization ::
S 015 T S 5 ¥
g = 040 i =
S 010 T S ®
g il 1 8 |_ 10-:
T 005 0.05 & —
€ M © —— dipping
o na et SR - g - clipping with quantization !
z 0.00 N N O N B T T 0 0.00 2 - —'— re|llJ with qtlJantizat'ion | W/|O qu'anigtiézla On
1 4 7 10 13 16 0 25 50 75 100 125 150 '-"5,75 200
Clippinglevel (a) epoch

Hard to find sweet spot = Automatic tuning via training!

J. Choi et. al (presented at SysML 2019)

Activation Quantization : PArameterized Clipping acTivation (PACT)

= Clipping level (= a) as a trainable parameter = Auto-tuned by Backprop
— a is /nitialized with large value to emulate RelLU in the beginning

—L2-regularization on a =» Converges to low magnitude to reduce quantization error
= Ex: CIFAR10-ResNet20 with PACT
— PACT automatically finds the best clipping level without expensive sweeping over a

11.5% —
Az =0.01
— ACt0 conv2blkl/act 11.0% -+ C|Ip-A2
. .
- conv1blkl/act conv2blkl/stemact o
= conv1blk1l/stemact conv2blk2/act = —PACT-A2
- conv1blk2/act conv2blk2/stemact Q 10.5% -
— conv1blk2fstemact conv2blk3/act c)
— convlblk3/fact conv2blk3/stemact _8
- convlblk3/stemact conv3blkl/act © o |
conv3blkl/stemact N} 10.0%
conv3blk2/act —
conv3blk2/stemact g
conv3blk3/act 9.5% -+
conv3blk3/stemact
9.0% T T T T T T T T T T T 1T 1T T
1.
1 4 7 10 13 16

\ 4

a X 0 25 50 [E) 100 125 150 175 200
epoch

35 J. Choi et. al (presented at SysML 2019)

Clipping level (a)

Inference : Challenges in Low Precision Weight Quantization

* Objective: Find a good quantization scale (a,,) w~N(0.1)
— Assumption: symmetric distribution (usually true...), 040 1
Uniform quantization (for simple HW] 035 4
— Given a quantization scale, quantized weights are exclusively 030 {

determined

(== -
ro
v

ro
o
"

occurrence

— Goal: find a,, that minimizes quantization error

o, = argmin ||w — w,|[* 00|
_ Ofw 0.00 -
» Previous approach: Find a,, with respect to E(|W]) - f P t ’

~Qyy dy
Ex: XNOR-Net (Rastegari et al., 2016)

—E.g., XNOR-Net, Ternary-Weight-Quant, etc.,
— Pros: Simple (sometimes with analytic solution)

— Cons: E(|W]) is not enough to capture shape of W J(B,a) = |[W — aB||?
o, B* = argminJ(B, «)
a,B
Need an analytic solution that . Wlsign(W) Y |[W;| 1
i . . a* = = =—=—[Wlla
better characterizes weight distribution n n n

36 J. Choi et. al (presented at SysML 2019)

Weight Quantization : Statistics Aware Weight Binning (SAWB)]

Pixd

= How to better capture shape of weight? o o ~
— E(|W)|) captures the representative values | /N
—E (WZ) captures the overall shape , \\-\\
—Use E(|W|) and E(W) for finding best a,, ? Gaussian s Uniform Triangle
Fix) Fix) Pix)
ay, = c1-VEW?) — ¢y - E(jw]) ora /\ N\
= VVerification: 1
— Take B representative distributions with varying — 'E—"-I_ap'laceh — _Lo ois t|c_ —= i mls—es;—
variance: Gaussian, Uniform, Triangle, Laplace,
o : number of quanitzation levels: 4
Logistic, Von mises
. . 140 © Gaussian (0,1) o
— Sweep over a,, to find one with smallest MSE[W-W(q] ® Uniform [-11]
. ® Laplace(0,1)
— Linear regression to find relationship among a,,,, 1351 o Logistic (0,1)
E(lwl) and E(wZ) ® Triangle [-2,0,2]

Von mises (0,4)

—
)
o
L
L=

VEW?)/E(lw])

Observation: a;,, is characterized by E(|W|) and ok

— . 2 .
E(W?) = Analytic solution to find the best scale 115 Gy =1 VEWD) — ez E(lwl)

15 16 17 18 19 20 21 22 23

37 J. Choi et. al (presented at SysML 2019) aE(w])

Full Precision Short-Cut for Inference (FPSC])

= Observation: ResNet is more sensitive to quant-error than VGG-like networks
— Short-cut in ResNet helps gradients to flow = Quantization on shortcut hinders training

= Full-Prec Short-Cut: Avoid quantization at input activation and weight in short-cut
— Short-cut involves small weights = Full-Prec does not harm performance (<1% ResNet18])
— FPSC allows larger magnitude gradients = Improved gradient flow

QNN training: VGG vs ResNet o , 0.01 — SAWB-2bit-FPSC
0% ' quantization applied o
VGG: Full-Precision X . 0009 —Baseline
159 —VGG: W/A 2-bit —¥ 0.008
. ResNet20: Full-Precisic weight layer é’ 0.007
:tj —ResNet20: W/A 2-bit (X)) év—teLU £ 0.006
= 10% : X %
o weight layer identity 8 0.005
5% F(x) +x Full-Prec D004
LM\ 0.003
00 [T I T
" 780 20280 39780 59280 ResNet block o 390 23790 47190 70590
steps

Improved gradient P

J. Choi et. al (presented at SysML 2019) flow by FPSC

38

Hyper-Scaled Precision : Inference Accuracies on Models

No loss of accuracy for 4-bit Inference

39

Lowest -

CIFAR10 Dataset

Name Baseline Quantized Degradation

< ResNet20: W2-A32 >
SAWB-fpsc 91.8 91.6 0.2
DoReFa 91.8 90.9 1.0
LQ-Nets 92.1 91.8 03
TWN 91.8 90.9 0.9
TTQ 91.8 91.1 0.6

< ResNet20: W32-A2 >
PACT-fpsc 91.5 91.4 0.2
DoReFa 91.5 90.1 1.4
ReLU6 915 91.0 0.5

< ResNet20: W2-A2 >
SAWB-PACT-fpsc 91.5 90.8 0.7
DoReFa 91.5 88.2 3.3 ¢
LQ-Nets 92.1 90.2 1.9

<VGG: W2-A2>

SAWB-PACT-fpsc 93.8 93.8 0.1+
LQ-Nets 93.8 93.5 0:3
QIP (lambda=0.5) 94.1 93.9 0.2

ImageNet Dataset

Name

Baseline Quantized Degradation

< AlexNet >
SAWB-PACT-fpsc 58.3 57.2 ~ 11
LQ-NETs 61.8 574 .7 44
QIP (lambda=0.0) 58.1 557 2.4
DoReFa-Net 55.1 536 1.5
HWGQ 585" 52.7 5.8
BalancedQ 7.1 55.7 1.4
WEQ © 571 50.6 6.5
WRPN-x1 5T 51.3 5.9
WRPN-x2"" 60.5 55.8 4.7
WRPN™x2, W2-A4 60.5 572 33 -
LéarningReg 58.0 54.1 39 .
<ResNetl8> .-
SAWB-PACT-fpsc 70.4 67.0% 3.4
LQ-NETs 70.3 64.9 5.4
QIP (lambda=0.0) 69.2 65.4 3.8
DoReFa 70.2 62.6 7.6
HWGQ 67.3 59.6 17
BalancedQ 68.2 59.4 8.8
LearningReg 68.1 61.7 64
< ResNet50 > p
SAWB-PACT-fpsc 76.9 742 ¥ 2.7
LQ-NETs 76.4 715 4.9
Apprentice (W2-A8) 76.2 715 3.4
UNIQ (W4-A8) 76.0 73.4 2.6

J. Choi et. al (presented at SysML 2019)"

Accuracy
higher
than prior
work

Algorithmic Approximations for Al

r) (
Inference Training
[beyond INTS] (beyond FP16]
4 J ~
[Fixed-point)
quantization with
\ retraining)
Custom number Adaptive gradient

formats for post
training quantization

compression

J

Weight pruning and
compression

40

Training Challenges Beyond FP16

FP8 Representation FP16 Accumulation Update

110 110, 110
100k —sSingle precision baseline 100 —3Single precision baseline 100 —Single Pre_cision Base_line p
—Mult: 8 bit, Acc: 32 bit, Update: 32 b|t —Mult: 16 bit, Acc: 16 bit, Update: 32 bit]| — Mult: 32 bit, Acc: 32 bit, Update: 16 bit

90 90 Vv A 90

2 80 = 80 = 80

15 15 15y

2 70 2 70 2 70

I T} L

@ 60[2.0% degradation | 3 °7 1.0% B o0 1.7%

F 50 1" sof radation] = 5 degradation |
40t 1 a0 \ 1 4 \
st (@) 1 3 (b) 1 s (©)]

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Epoch Epoch Epoch

« State of the art Training systems use FP16 for data representations and FP32 for accumulations &
weight updates.

« Challenge: To reduce these precisions down to FP8 for representation and FP16 for accumulation &
weight updates.

« Goal: Increase training-performance by 4X over today’s systems!

41 N. Wang et. al (presented at NeurIPS 2018)

FP8 Training : FP8 Data Representation

100 r v T v 110

100
=—Single Precision Baseline =—=Single Precision Baseline ==Single Precision Baseline
9ot —FirstLayer: Pixel FP8 100k ==LastLayer: Forward FP16, Error FP16, Gradient FP16 90 ==LastLayer: GEMM FP8, Input-to-SOFTMAX FP16
—FirstLayer, Pixel FP16 ==LastLayer: Forward FP8, Error FP8, Gradient FP8
ook LastLayer: Forward FP16, Error FP8, Gradient FP8

- - A |—LastLayer: Forward FP8, Error FP16, Gradient FP16 —
x X 2
e 15 15
[e] o (]
= = =
w 1] 1]
—— - -
» 7] 7]
5))
[[-

30F

20

1020 30 40 50 60 70 80 30 10 20 30 20 207510 15 20 25 30 35 40 45
Epoch Epoch Epoch

* First layer and last layers are very sensitive to lower-precision (FP8] -
especially for image processing (keep them in FP16).

" |nput to softmax is sensitive to low-precision : possible to keep last layer in
FP8 but outputs need to be preserved in FP16.

4 N. Wang et. al (NeurIPS 2018), and X. Sun et. al (NeurIPS 2019)

FP8 Training : Hybrid FP8 Data Representation

* Multiple FP8 formats investigated
= FWD FP 1-4-3 and BWD FP 1-5-2 (sign-exponent-mantissa)
» FP 1-4-3 has an exponent bias of 4 to cover small numbers, [2-1", 30]

43

forward

backward

wgrad

update

L-1 =~ A1-4-3 ®[W1-4-3 A1-6-9 [~ FéeNL_l_J_’ » A1-4-3 (X} W 1-4-3 |+ L+1
1 4 N\ T N\ ‘f N\ ‘f ReLu’) ‘f)\ 4 T) 4 N\

L+1 — E 1-5-2 W'"-4-3 — E 1-6-9 BN E 1-5-2 (X} WT1-4-3 = L-1
E 1-5-2 }X{ A 1-4-3 H G 1-6-9 J /R8b GEMM I
4)

W1-4-3 H Optimizer Hwnew1-4-3 =1-6-9

g - $ o { $ N D
esidual omentum Other states
(169%ab }JJ \ J
[1-6-9][1-6-9][1-6-9 }

L Local Memory | -

N. Wang et. al (NeurIPS 2018), and X. Sun et. al (NeurIPS 2019)

FP8 Training : FP16 Accumulations

Input: {Xp}n-—1.n/ Vntn=1:N FPrue) -
Parameter: chunk size CL
Output: sum (FP,.)
sum = 0.0; idx = 0; num,., = N/CL
for n=1:num, {
sumg, = 0.0
sor 1—1:0L %
idx++
tmp = Xigx * Yiax (in FPpye)
sum., +=tmp (in FP,..)}
sum += sum,, (in FP,.) }

(a)

a
[
N
o
o
o

Accumulation V

———
[—-——-___-
——

| ChunkSize=8

<FP16 —NR >
ChunkSize=1
ChunkSize=2
——ChunkSize=4
——ChunkSize=8
——ChunkSize=16
——ChunkSize=32
! ! ! ! ! | ! | | | —ChunkSize=64

16 4096 8176 12256 16336 — ChunkSize=128
Accumulation Length —ChunkSize=256

* |dentified low-precision swamping as the key challenge with FP16 accumulations
[current state of the art is FP32 accumulations).

— Floating point addition involves right-shift of the smaller operands by the difference in exponents. In case of large-to-
small number addition, small numbers maybe partially or completely truncated causing information loss.

* Chunk-based accumulations [Hierarchical accumulations] fix this problem.

— Enables FP16 accumulation [may need hardware support)

N. Wang et. al (NeurIPS 2018), and X. Sun et. al (NeurIPS 2019)

44

Test error %

FP8 Training Results

80— MobileNet V2/imageNet —— 30.0— Transformer/WMT En-De —

------ x1.0 baseline —— FP32 baseline
x1.0 HFP GEMM 27.5 HFP GEMM ettty ettt
x0.5 baseline)

x0.5 HFP GEMM 25.0 6.00
oztmne | sl /o
% 20.0! ¢ g 525
S
= 4.50 I\'.-_,
150 425 I_T—if-l.—-'_r__;__.
12.5 4.00 T
b' 3'750 10000 20000 30000 40000 50000
10.0 updates
20O 50 100 150 200 250 0 5 10 15 20 25 30
epochs epochs

Model(Dataset) Accuracy or [other metrics] Baseline(FP32) HFPS8 + Round-off update
AlexNet (ImageNet) 57.28 57.21
ResNet18 (ImageNet) 69.38 69.39
ResNet50 (ImageNet) 76.44 76.22
MobileNetV2 (ImageNet) 71.81 71.61
DenseNetl121 (ImageNet) 74.76 74.65
2-LSTM (PennTreeBank)[Test ppl.] 83.66 83.86
Transformer-base (WMT 14 En-De)[BLEU] 27.50 27.27
4-bidirectional-LSTM Speech (SWB300)[WER] 9.90 10.00
MaskRCNN(ResNet50) (COCO)[Box/Mask AP] 33.58/29.27 33.06/28.86
SSD-Lite(MobileNetV2) (VOC)[mAP] 68.79 68.72

« Combination of selective FP8 precisions, chunk-based accumulations and stochastic weight
updates enable baseline accuracies with FP8 Training for a wide variety of neural networks.

45 N. Wang et. al (NeurIPS 2018), and X. Sun et. al (NeurIPS 2019)

Summary

= Al workloads have revolutionized application landscape
— Enabled new apps and services
— Impose extreme computational challenges

* Need to rethink computing stack to boost efficiency of Al workloads

= 3 key ingredients to building an efficient Al system:
— Hardware Accelerators: Specialized computing systems for Al

— Custom Compilers: Software stack to extract efficiency without
sacrificing end-user productivity

— Approximate Computing: Leverage resiliency to approximate
computations to benefit efficiency

= Many exciting opportunities for the future as workloads continue to
grow and evolve!

46

Hardware Approxirr_late
Accelerators Computing

Custom
Compilers

| tinyML Summit 2022 Sponsors

ANALOG ¥ o
DEVICES ONdevices q r m AN ASPINITY bramchl P): C EVA

AHEAD OF WHAT'S POSSIBLE™

Deeplite = EDGE IMPULSE {‘m €mMza Y FotaHub SREENNANES 99 £Grovety Lnc.

Q‘// Himax BHOTG (%) imagimob (in’fineon Gip) itemis A sk e

GaLatentAl #LaTTiceE Micro.ai - (mniML WO feE/ BArumea
:Ei; Qeexo Qualcomn © Rackner = RealityAl RESXEN

aY DO ram—_ S:?nyicon uctor
RENESAS LV () seeed SensiML somiconduc Ly ooz

Corporation life.augmented

@) synaptics SynSense SYNTIANT £ Tensil.ai T TensorFlow ~ AMOS

Ll

Copyright Notice

This presentation in this publication was presented as a tinyML® Summit 2022. The content reflects the
opinion of the author(s) and their respective companies. The inclusion of presentations in this
publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of
the authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org

