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Intelligent Internet of Things – Sensor Nodes



Extreme Edge: Sensor Node 

Key Requirements:

• Low cost

• Small form factor 

• Ultra low power
– Extended battery life of 10+ years

– Cheaper/smaller batteries

• Modest performance requirement (in 
terms of sample rate and  resolution) 

• Integrated analog interface, power 
management, NVM storage, RF and 
digital processing in a single device: 
“analog friendly” technology node 
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The New Low Power Challenge

“always-on” with “event of interest” occurring infrequently
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Why Intelligence at Extreme Edge?
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DNN based intelligence at the Extreme Edge

Accuracy  Performance  Power  Cost
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System-level optimization 
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• Hierarchical Detection

• Context aware modulation of sample rate and bit precision

• Event driven sensing (asynchronous analog-to-digital conversion)
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Low cost, Low Power DNN inference on end nodes

• Device constraints: 

– All memory on chip – no external memory interface

– Model parameters need to fit within available NVM 

(typically 4x of SRAM)

– Peak SRAM requirements – need to be less than 

available SRAM

– Compute complexity – need to meet real-time 

requirements and lower power on the target 

hardware architecture – as older technology nodes 

and low leakage processes drive modest clock rates 

• NN algorithm (features, topology selection) and 

NN complexity reduction need to be co-optimized 

with hardware architecture – so as to meet 

desired accuracy and real-time performance.
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NN complexity reduction – aggressive weights quantization

* Binary wights

* Ternary weights

* Branched/2 Ternary weights

* 4b weights

*  Per layer/per channel 

variable weight quantization  

* 8-bit weights

*  Floating point weights 
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Peak feature-map storage reduction

• Activations quantization e.g. 4 bit data

• Exploiting overlap between successive input feature maps
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NN model augmentation techniques for 
exploring quality vs. complexity tradeoffs

FLASH SRAM     Latency/Power

• Scaling number of channels           X            X X

• Scaling input feature-map                             X                X

• Adding layers                                  X                              X

Need hardware aware integrated neural architecture augmentation + 

quantization framework – which drives “acceptable” accuracy at low 

power meeting real-time performance within resource constraints. 
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Target Hardware options

Existing CPU –

SW only 

implementation
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Generic Customizable RISC architecture  
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Baseline embedded RISC CPUs can be enhanced to:

• handle bit-level packed data (binary, ternary weights), 

• support conditional add/sub/nop operations for multiplication with binary/ternary weights



LUT (lookup table) based pointwise convolution
Consider Pointwise Convolution: M input channels, N output channels, feature-map size of WxH

for  (i = 0 to H – 1) {

for (j = 0 to W – 1) {

for (m = 0 to (M/4)-1) {

for (n = 0 to N-1) {

Y[n][i][j] += (X[4*m][i][j] * K[4*m,n] + 

X[4*m+1][i][j] * K[4*m+1,n] +

X[4*m+2][i][j] * K[4*m+2,n] + 

X[4*m+3][i][j] * K[4*m+3,n]) }}}}

When K’s are binary (+1/-1) weights, the inner 4 term weighted sum compute can take up to 16 possible 

values.  

If these values are pre-computed into a lookup table, the number of computations (ADD/SUB operations) 

can be reduced by ~4X from (M-1)*N to (M/4-1)*N

The same LUT approach can be used to reduce compute for Ternary weights as well. 14



Summary

• Always-on Intelligent Sensor node applications demand the “event-of-interest” detection 

to be done locally.

• This drives need to support low cost and ultra-low power DNN inferencing

• We need co-optimization across system, algorithm, architecture, design and circuit level 

techniques

• SW based implementation on standard CPUs is not adequate to meet latency, power 

requirements for many applications

• We need 

– Custom hardware – that can efficiently handle aggressively quantized NNs

– Hardware aware integrated neural architecture augmentation + quantization framework – which 

drives “acceptable” accuracy at low power, meeting real-time performance within memory 

resource constraints
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THANK YOU
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