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Introduction

= Internet of Things (loT)
= Variety of sensors
= Connected to cloud (often wirelessly)

= Machine learning
= Extract relevant information from data
= High computational demand

= Data Processing and Learning
* Mainly in the cloud
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Edge Vs Cloud
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Figure reference: Accelerating Implementation of Low Power Atrtificial Intelligence at the Edge, A Lattice Semiconductor White Paper, November 2018
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What about On-device Learning? Can we do at the edge?
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Intelligent
devices

= Customization and Personalization: TinyML devices need to continually adapt to
new data collected from the sensors.

= Security: Data cannot leave devices because of security and regularization.
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Al Workloads from Cloud to Edge (Extreme?)
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New platform for edge computing every year. Edge-Al Platforms
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New trend on-sensors capabilities

IniVation Foveator
Sony IMX 501 DVS-Sensor plUS Al cores Bosch BHI260AP

Intelligent
Neuromorphic S Smart sensor: BHI260AP

Pixel chip Technology

, B ST LMS6DSOX and new ISM330
Intelligent vision sensor

stacked configuration 6-axis INEMO™ IMU
with Machine Learning Core
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Next generation of loT devices: Always-on Smart Sensors.

1. ) Edge Signal Processing and Al

Smart devices
for perpetual operation

3.) Low power system design 2.) Energy harvesting

4.) Low Power and long range communication
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Next generation of loT devices: Always-on Smart Sensors.

1. ) Edge Signal Processing and Al

Smart devices
for perpetual operation

3.)

4
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On-Sensors ML and ODL

= Typical “Smart” Sensor

= Traditional Sensors

= MCU or other Edge processor for data
collection and analysis

= Wired/wireless interface to transmit findings
(optional)

= |n-sensor approach
= |ntelligence embedded in the sensor IC
= Always-on analysis and learning
= “Zero” latency

D-ITET Center for Project-Based Learning, Integrated Systems Laboratory, ETH Ziirich
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On-Sensor Learning

= Project Goal: anomaly detection based on
Neural Network (encoder-decoder),
parameters learned on the device.

= Advantages:

* Plug-and-Play anomaly detection: no data
acquisition, no training/deployment. Place-and-
forget device.

= Always on monitoring with low power
consumption
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In-Sensor Hardware: ST ISM330AILP

ST’s sensor puts together Sensor and Processing

= Established ST's MEMS technology + proprietary
ISPU (intelligent sensor processing unit)

= NN Core = small MCU with proprietary RISC
architecture, FPU, BNN accelerator

= 40KB of memory (RAM+program)
= 4 cycle wake-up

= Previous work shows the performance use with
supervised learning!

= Will be presented at IEEE Sensors 2023.
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Challenges

= Memory: 8+32KB of memory for both .text
and RAM Current work

= Computation resources = ODL options

= Max 10MHz, but ideally only 5MHz * Full training (very memory intensive, some
optimizations possible, discouraged) [1]

= Update bias only (probably negligible effect in
small networks) [2]

= Learning is memory intensive = Qutput layer only (seems the best option) [3]

= Only small models allowed as well as
encoder/decoder

= Partial learning (last layer, bias only update)

= DSP instructions

[1] https://arxiv.org/abs/2206.15472
[2] https://arxiv.org/abs/2007.11622
[3] https://arxiv.org/abs/2103.08295
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ODL Pipeline

DSP library for STRed ISA!

Fancy functions supported in HW (FFT
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On the Airbus [1] dataset.

Example of Dataset: frame error (blue) +
smoothed (orange)

Anomaly

.
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[1] https://www.research-collection.ethz.ch/handle/20.500.11850/415151
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Evaluation | |
On Airbus anomaly Detection Dataset [ETH] Evaluation metric: ROC AUC

- Training time of 2 seconds
= Evaluating on Anomaly Detection Task

= Pipeline: RFFT - Accumulate/Avg - Autoencoder 1.0 4
-> MSE
. - 5 08-
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Experimental results and evaluation
Training vs Inference vs Sampling rate. layer layer layer

= High AUC/Accuracy can be achieved with
= FFT preprocessing 672 flops

= RAM usage: 4-15 KB + program (usually around 8KB with DPS
functions) - should fit

= FLOPS for training 232k
= 1.6 mJ/training!

= 0.23s of compute time at 5MHz with 5 cycles/FLOP :
= FLOPS per inference 1097 Neurons 33 8 33

= We measured in ISPU ~5cycles/FLOP - training latency
~20s due to data to learn, of which ~0.25s of computation 10001 1
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Conclusion and take away

= TinyML come become very tiny with in-
sensors device

= ODL is an hot emerging top but even more
challenging

=  Anyway new technology are enabling both in
sensors and ODL

= With a lot of limitation! :D

D-ITET Center for Project-Based Learning, Integrated Systems Laboratory, ETH Ziirich E PROJECT BASED LEARNING Michele Magno | 07/12/22 | 18



Thank you for your attention!

| = Self Sustaining Smart-Sensors for Indoor and
= TinyML and Embedded outdoor Applications and Industrial Applications
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Thank you
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This presentation in this publication was presented at the tinyML® EMEA Innovation
Forum 2022. The content reflects the opinion of the author(s) and their respective
companies. The inclusion of presentations in this publication does not constitute an
endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each
presentation is the work of the authors and their respective companies and may
contain copyrighted material. As such, it is strongly encouraged that any use reflect
proper acknowledgement to the appropriate source. Any questions regarding the use
of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.
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