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$We can do this because of the Sparsity 
of the Weight Matrices.
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Proposed Approach: Low-Rank Linear Layer

Advantages

• No fine-tuning/retraining required.

• Prevent overfitting by regularizing the model 

• Reduce computational complexity è faster training 
and inference.
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Results

Message and Update State Nets: two fully-connected

# Transceiver pairs = 50

# Training samples = 2000

# Testing samples = 500

Evaluation metric = Sum Rate
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Results

Model Size Ratio: Original size
Low rank size

"#: (Maximum) rank for Message Network

"$: new rank for State Update Network.
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Results

Sum Rate Ratio:  Low rank sum rate
Original sum rate

"#: (Maximum) rank for Message Network

"$: new rank for State Update Network.
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Results
Weight 

Distribution
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Key 
Takeaways

ü GNN-based RRM

ü Proposed Low-Rank GNN

ü Reduces the model size 60X

ü Keep the performance (At 
best ≤ #% loss)
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