When Considering New Hardware Ideas, Build Complete ML Systems!

Borivoje Nikolić
bora@berkeley.edu
University of California, Berkeley
So, You Have a Brilliant New Idea
Full-System Insight: SoC

Performance Impacts
Resource contention, etc.

Shared L2 Cache

IOs, Interconnects, etc.
Performance Impacts
Cache coherence, miss rates/latencies, etc.

Shared L2 Cache
Full-System Visibility: Virtual Addresses

Performance Impacts
Page faults, TLB hits, etc.
Full-System Visibility: Host CPUs

Performance Impacts

Unaccelerated kernels, etc.
Full-System Visibility: Operating System

Performance Impacts
Interrupts, context switches, etc.
Custom SoC/SiP architecture
New modules + reusing existing modules

- **RTL Simulation** running test binaries/micro-benchmarks
- **FPGA-accelerated simulation** running full workloads
- **FPGA prototyping** for fast demos
- **Tape-out an SoC prototype**
What is Chipyard?

- An organized **framework** for various SoC/SiP design tools and software
- A **curated IP library** of open-source RISC-V SoC components
- A **methodology** for agile SoC/SiP architecture design, exploration, and evaluation
SoC/SiP architecture and generators
Tiles and Cores

Tiles:
- Each Tile contains a RISC-V core and private caches
- Several varieties of Cores supported
- Interface supports integrating your own RISC-V core implementation

Digital SoC Architecture

RocketTile
- Rocket Core
- PTW
- L1I$
- L1D$
- Tile Bus

BoomTile
- Boom Core
- PTW
- L1I$
- L1D$
- Tile Bus

Tile Bus
- System Bus
- Periphery Bus
- Control Bus
- Front Bus

L2 Bank
- UART
- GPIOs
- Memory Bus
- DRAM Chan.

L2 Bank
- DRAM Chan.
- DRAM Chan.

BooCC Accelerator

MMIO Accelerator

BootROM
- PLIC
- CLINT
- Debug

Serdes

Tiles and Cores
Rocket and BOOM

Rocket:
- First open-source RISC-V CPU
- In-order, single-issue RV64GC core
- Efficient design point for low-power devices

SonicBOOM:
- Superscalar out-of-order RISC-V CPU
- Advanced microarchitectural features to maximize IPC
- TAGE branch prediction, OOO load-store-unit, register renaming
- High-performance design for general-purpose systems
RoCC Accelerators:

- Tightly-coupled accelerator interface
- Attach custom accelerators to Rocket or BOOM cores
RoCC Accelerators

1. Core automatically decodes + sends custom instructions to accelerator
2. Accelerator can write back into core registers
3. Accelerator can support virtual-addressing by sharing core PTW/TLB
4. Accelerator can fetch-from/write-to coherent L1 data cache or outer-memory

Flexible interface supports a variety of accelerator designs

Included in Chipyard:
- Gemmini ML accelerator
- Hwacha vector accelerator
- SHA3 accelerator

BOOM/Rocket
TLBs
L1I$
L1D$
SystemBus
L2
Peripherals
MMIO Accelerators:
- Controlled by MMIO-mapped registers
- Supports DMA to memory system
- Examples:
 - Nvidia NVDLA accelerator
 - FFT accelerator generator
Coherent Interconnect

TileLink Standard:
- TileLink is open-source chip-scale interconnect standard
- Comparable to AXI/ACE
- Supports multi-core, accelerators, peripherals, DMA, etc

Interconnect IP:
- Library of TileLink RTL generators provided in RocketChip
- RTL generators for crossbar-based buses
- Width-adapters, clock-crossings, etc.
- Adapters to AXI4, APB
NoC Interconnect

Digital SoC Architecture
- RocketTile
 - Rocket Core
 - PTW
 - L1I$${}$$
 - L1D$${}$$
- BoomTile
 - RoCC Accelerator
 - Boom Core
 - PTW
 - L1I$${}$$
 - L1D$${}$$
- MMIO Accelerator
- Tile Bus

Constellation Network-on-Chip Interconnect
- L2 Bank
- L2 Bank
- UART
- GPIOs
- Control Bus
- BootROM
- PLIC
- CLINT
- Debug
- Serdes
- Memory Bus
- DRAM Chan.
- DRAM Chan.
- Control Bus
- Serdes

Constellation
- Flexible NoC generator
- Drop-in replacement for TileLink crossbars
Shared memory:
- Open-source TileLink L2 developed by SiFive
 - Directory-based coherence with MOESI-like protocol
 - Configurable capacity/banking
- Support broadcast-based coherence in no-L2 systems
- Support incoherent memory systems

DRAM:
- AXI-4 DRAM interface to external memory controller
- Interfaces with DRAMSim
Peripherals and IO

- Open-source RocketChip blocks
 - Interrupt controllers
 - JTAG, Debug module, BootROM
- UART, GPIOs, SPI, I2C, PWM, etc.
- TestChipIP: useful IP for test chips
 - Clock-management devices
 - SerDes
 - Scratchpads
SoC Architecture
Extend to Chiplets

- Take advantage of existing IP
- Extend bringup infrastructure
 - Configurable bus connections off-chip
 - Make chip<>FPGA APIs generic
Flow Tool: HAMMER

• Modular VLSI flow
 • Allow reusability
 • Allow for multiple “small” experts instead of a single “super” expert
 • Build abstractions/APIs on top
 • Improve portability
 • Improve hierarchical partitioning

• Three categories of flow input
 • Design-specific
 • Tool/Vendor-specific
 • Technology-specific

Customized TCL Script
Gemmini in CHIPYARD

- DNN accelerator generator
- Flexible hardware template
- Full-stack
- Full-system
Spatial Array for Matrix Algebra

- Parameters:
 - Dataflow
 - Dimensions
 - Datatypes
 - Pipelining
Gemmini: Spatial Array for Matrix Algebra

- Parameters:
 - Dataflow
 - Dimensions
 - Datatypes
 - Pipelining
Gemmini: Spatial Array for Matrix Algebra

- Parameters:
 - Dataflow
 - Dimensions
 - Datatypes
 - Pipelining
Gemmini: Non-GEMM Functionality

- Can be optimized out at elaboration-time
 - Softmax
 - Layernorm
 - Activation functions
 - Max-pool
 - Transpositions
 - Matrix-scalar operations
Gemmini: Loop Unroller

- Dynamically schedules operations
 - Such as on-the-fly im2Col

- Parameters:
 - Types of loops to unroll in hardware
 - Only inference kernels?
 - Training kernels too?
Gemmini: Local Scratchpad and Accumulator

- Parameters:
 - Capacity
 - Banks
 - Single- or dual-port
Gemmini: System Memory

- Parameters:
 - Capacity
 - Banks
 - Optional L3
 - DRAM controller
Gemmini: Virtual Address Translation

- Parameters:
 - TLB capacity
 - TLB hierarchy
 - e.g. L2 TLB
Gemmini: Host CPU

- Parameters:
 - In-order/out-of-order
 - ROB capacity
 - L1 capacity
 - Branch predictor
Gemmini: Full SoC
Gemmini: Programming Model

Exo Language: DSL to program accelerators [PLDI’21]

Hand-tuned C library for DNNs

Direct hardware configuration, low-level ISA

ONNX

High

Medium

Low

matmul(...); conv(...); residual_add(...); max_pool(...); global_averaging(...)

configure_loads(...); configure_stores(...);

preseed_spatial_array(...); feed_array(...)
Performance: Evaluating Host CPUs

- “Im2col” runs on CPU, matmuls run on Gemmini
Performance: Evaluating Host CPUs

- “Im2col” runs on CPU, matmuls run on Gemmini

![Bar chart comparing speedup of various models with two types of CPU configurations.](chart.png)
Performance: Evaluating Optional Functional Units

- “Im2col” and matmuls both run on Gemmini

![Speedup Chart]

- ResNet50: 1.00, 1.01
- AlexNet: 1.00, 1.01
- SqueezeNet: 1.00, 1.01
- MobileNetV2: 1.00, 1.04
- BERT: 1.00, 1.15
Performance: Overall

- Inference speed:
 - ResNet50: 40.3 FPS
 - AlexNet: 79.3 FPS
 - MobileNetV2: 37.5 FPS
 - BERT: 165x speedup

- About 80% as fast as NVDLA
LLaMA-7B inference

- Matrix-matrix multiplication between weights and activation during QKV generation
- Matrix-vector multiplication between activations for attention mechanism and KV cache
- Element-wise add/mult
- Non-linear operations
 - Rotatory positional encoding (RoPE)
 - RMS Norm
 - SwiGLU
 - Softmax
 - Divide by constant for attention scores
LLaMA-7B Memory requirements

• Depending on the sequence length (SeqLen) the memory footprint changes
• For low SeqLen, weights are the primary memory hogs
• Increasing SeqLen, shifts the bottleneck to KV cache storage
• Most tinyML devices will operate on low SeqLen
• Primary focus is to compress weights

Hooper et al. KVQuant, arxiv, 2024
SqueezeLLM

Two key approaches

• Sensitivity-based non-uniform quantization → quantization bins are allocated closer to sensitive values

• Dense and sparse decomposition to retain both sensitive values and outliers as full-precision sparse format

SqueezeLLM on LLaMA-7B

Kim et al. SqueezeLLM, arxiv Feb. 2024
Non-uniform quantization on Gemmini

- Int2/3/4 indices to fp16 lookup table
- Weights are quantized to Int2/3/4 and stored in memory of Gemmini
- Before MatMul, the Int2/3/4 indices are used to dequantize weights to fp16
- Dense MatMul happens with fp16 in the systolic array
- Results are scaled using per-channel scaling factors
Raven, Hurricane: ST 28nm FDSOI, SWERVE: TSMC 28nm EOS: IBM 45nm SOI, CRAFT: 16nm TSMC, Intel 22nm
Argo: GF12, SCuM’22, BearlyML: Intel 16
For Class Tapeouts

2021:
18 students
TSMC 28nm
1mm x 1mm

OSCIBear: 32b RISC-V + BLE + AES + Power

2022:
41 students
2x Intel 16
2mm x 2mm

SCuM-V’22: 64b RISC-V core, BLE + 802.15.4, LDOs, references

BearlyML’22: 5 RISC-V cores: 4 Rocket with custom sparse matrix acc, Saturn-V, NoC, PLL, L2

2023:
54 students
3x Intel 16
2mm x 2mm

SCuM-V’23: 32b RISC-V core, BLE + 802.15.4, LDOs, references, radar

BearlyML’23: 4 RISC-V Rockets with custom sparse matrix acc, near-memory acc, NoC, L2$

RoboChip’23: 2 RISC-V Rockets with Kalman, LQR acc, BooM + MTE, NoC, L2$

2024:
70 students
Bedtime Story Demo on BeralyML’23

Running a small LLaMA model trained on tinyStories dataset…
An open, extensible research and design platform for RISC-V SoCs

- Unified framework of parameterized generators
- One-stop-shop for RISC-V SoC/SiP design exploration
- Supports variety of flows for multiple use cases
- Open-sourced, community and research-friendly

https://github.com/ucb-bar/chipyard

Thanks to all internal/external Chipyard developers
Copyright Notice

This presentation in this publication was presented at the tinyML® Research Symposium 2024. The content reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the authors and their respective companies and may contain copyrighted material. As such, it is strongly encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org