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Keyword Spotting at the Extreme Edge
• Voice-controlled personal assistants

• Drones controlled remotely to investigate hard-to-reach locations

• Hearing devices adapted to the environment conditions
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• Unknown environments where pretraining (offline) ≠ target (online) data
• Domain shifts, differences in sensors, knowledge expansion
• Accents, genders, background noises
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Keyword spotting accuracy drops 
by 3%-26% compared to silent 
environments [Cioflan2024] 

WER variation by US region in 
Bing Speech (left) and YouTube 
Captions (right) [Tatman2017]

Feminine vs. masculine accuracy 
on function words for two speech 
translation model, in three 
languages [Savoldi2022]

Accuracy degrades in real-world conditions



• Server-side training on on-site data
• Does not respect privacy

• Communication reduces                  device lifetime

• User-specific labeled data             is scarce

How to mitigate the performance degradation?
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• Server-side training on on-site data
• Does not respect privacy

• Communication reduces                  device lifetime

• User-specific labeled data             is scarce

• On-device training (by backpropagation)
• Requires memory               beyond tinyML constraints

• Latency increases                  with #layers, #samples, #epochs

How to mitigate the performance degradation?
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On-Device Learning of Speaker-Aware Embeddings
• Lightweight backbone, suitable for ODL [Cioflan2024]
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• Lightweight backbone, suitable for ODL [Cioflan2024]
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On-Device Learning of Speaker-Aware Embeddings
• We introduced embeddings and fuse them with the KWS backbone

• Speaker identity ↦ n-dimensional vector
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On-Device Learning of Speaker-Aware Embeddings
• We introduced embeddings and fuse them with the KWS backbone

• Speaker identity ↦ n-dimensional vector (jointly learned)

• Feature-level fusion along channel dimension (projection ∝ speech char.)
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On-Device Learning of Speaker-Aware Embeddings
• We introduced embeddings and fuse them with the KWS backbone

• Speaker identity ↦ n-dimensional vector (jointly learned)

• Feature-level fusion along channel dimension (projection ∝ speech char.)

• Late fusion minimizing on-device learning costs
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Google Speech Commands dataset
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Lessons learned during pretraining
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Lessons learned during pretraining

tinyML Research Symposium | April 2024 15

Test
Validation

Train

6.9% 4.3%

Pretraining 2256
 

2612 2617

Error rate

Evaluation 362 6 1

Embedding Error 
rate [%]

- 5.39

Addition 5.38

Multiplication 5.28

Backbone-compatible concatenation 5.32

Classifier-compatible concatenation 5.75

1 
1 
1 
1 

1 
1 
1 
7 

1 
1 
1 
4 

On-Device Learning for 6 speakers
(between 4 and 22 training 

samples per class)

[Warden2018]
GSC–10 GSC–35 

5.0%



Lessons learned during pretraining
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Few-shot learning of speaker embeddings
• Learning speech characteristics decreases KWS error rate

• Evaluated on six speakers (American, British, and Indian English accents)
• Sufficient to have four training samples per user
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GSC-10 Error rate decrease [%] ↑

# classes #samples = 4

8 0.46

10 0.73

GSC-35 Error rate decrease [%] ↑

# classes #samples = 4

20 3.08
30 4.47
35 5.74

Pretraining error rate: 5.33% Pretraining error rate: 30.08% 



Few-shot learning of speaker embeddings
• Learning speech characteristics decreases KWS error rate

• Evaluated on six speakers (American, British, and Indian English accents)
• Sufficient to have four training samples per user
• More training samples → more user-specific information → better performance

GSC-10 Error rate decrease [%] ↑

# classes #samples = 4 #samples ≥ 4

8 0.46 0.92

10 0.73 0.99

GSC-35 Error rate decrease [%] ↑

# classes #samples = 4 #samples ≥ 4

20 3.08 3.14
30 4.47 4.54
35 5.74 5.27
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Pretraining error rate: 5.33% Pretraining error rate: 30.08% 



Few-shot learning of speaker embeddings
• Learning speech characteristics decreases KWS error rate

• Evaluated on six speakers (American, British, and Indian English accents)
• Sufficient to have four training samples per user
• More training samples → more user-specific information → better performance

• User embeddings mitigate overfitting in domain shifts

Error rate decrease [%] ↑

# classes Update only the 
backbone

Update the 
backbone and 

the embeddings

8/GSC-10 1.72 2.06

20/GSC-35 3.28 3.54
30/GSC-35 4.34 4.67
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On-Device Learning and tinyML constraints
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• Deployment estimates on PULP
Vega SoC [Rossi2022]
• 79 GFLOP/s/W @ 50 mW
• 128 kB L1 TCDM, 1.6 MB L2 SRAM



On-Device Learning and tinyML constraints
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• Deployment estimates on PULP
Vega SoC [Rossi2022]
• 79 GFLOP/s/W @ 50 mW
• 128 kB L1 TCDM, 1.6 MB L2 SRAM

DS-CNN Model S(mall) M(edium) L(arge)

Parameters [k] 23.7 138.1 416.7

Error decrease [%] 0.73 0.94 0.3

FLOPs [M] 1.04 2.8 4.5

Memory [kB] 3.6 9.7 15.5

Energy [μJ] 13.22 35.53 57.01

• ODL under 16 kB, feasible for tinyML

• 13 μJ/epoch prolongs device lifetime

• vs. full training: 78% of the error rate, 
340× fewer FLOPs

• vs. classifier update: 13× less energy 
efficient, 55% more accurate



Conclusions
• Learning speech characteristics increases keyword spotting accuracy

• Multiplicative user embeddings integrated through late-level fusion
• Error rate decreases by up to 5.74% (relative improvement of 19%)

• Sufficient to have only 4 training samples per class

• Speech embeddings are suitable for On-Device Learning on tinyML systems
• 16 kB of memory for backpropagation learning, 128 kB of storage per class for samples
• 0.73% error decrease with 13 μJ/epoch (260 μJ per speaker with early stopping)
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Conclusions
• Learning speech characteristics increases keyword spotting accuracy

• Speech embeddings are suitable for On-Device Learning on tinyML systems

• What are we working on now?
• Pairing efficient on-device-learning with 

state-of-the-art (linear) attention-based 
backbones [Scherer2024]

• On-device implementation on GAP9 – 
derivative of Vega

• From user embeddings to environment
embeddings – boosting performance 
by focusing on the domain shift

• Domain-Aware Keyword Spotting at the
Extreme Edge
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