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Hyperdimensional Computing (HDC)

Brain-inspired computing approach
1. Distributed feature representation in a holistic high-dimensional space
2. Lightweight training and inference
3. Robustness against errors/noise
4. Well-suited for hardware acceleration
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Encoding function: two examples

×
×
×
×
×

Level HVs ID HVs
Input data

+
+
+
+
=

Encoded HV

Input data
×

[1, F]
[F, D]

Encoded HV

[1, D]

Projection Matrix

=

ID-level Encoding

Non-linear Projection Encoding



4

HDC Optimizations

Dimensionality

Objective: Finetune HDC hyperparameters to reduce resource requirements
  What are HDC hyperparameters?
Dimensionality, quantization bitwidth, sparsity, bandwidth, learning rate, …

Bitwidth

Encoding-based

From integer to binary
From 10k to 1k dimensions

Num. of level hypervectors
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Related works and challenge
Previous works exploring dimensionality reduction
1. QuantHD [TCAD’19], 
2. OnlineHD [DATE’21], 
3. DOMINO [ICCAD’23]

Previous works exploring quantization
1. QuantHD [TCAD’19], 
2. ManiHD [DATE’21],
3. QubitHD [arXiv’22]

How to select proper HDC hyper-parameters while 
ensuring target accuracy levels?

Hernández-Cano et al. "Onlinehd: Robust, efficient, and single-pass online learning using hyperdimensional system.“, IEEE DATE  2021
Imani et al. "Quanthd: A quantization framework for hyperdimensional computing." IEEE TCAD, 2019

Wang et al. "DOMINO: Domain-Invariant Hyperdimensional Classification for Multi-Sensor Time Series Data." IEEE ICCAD 2023
Zou et al. "Manihd: Efficient hyper-dimensional learning using manifold trainable encoder." IEEE DATE 2021
Bosch et al. "QubitHD: A stochastic acceleration method for HD computing-based machine learning." arXiv 2022



MicroHD optimization

MicroHD: overview
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MicroHD: step 1
HDC Analysis

HDC analysis
Baseline HDC 

model
List of adjustable 
hyperparameters

Encoding method: ID-Level encoding
Quantization scheme: integer (16-bit)
Input Features: 50
Output Classes: 10
Hyperspace dimensionality: 10k
#Levels: 1024
Accuracy: 95%
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MicroHD: step 2
Resource requirements

How much memory does the application need?
Encoding
1. ID hypervectors (binary, size = # input features × dimensionality)
2. Level hypervectors (binary, size =  # levels × dimensionality)
Model
1. Class hypervectors (bitwidth Β, size = # output classes × dimensionality)

How many bitwise operations does the application need?
Encoding
1. # bindings = dimensionality
2. # bundlings = dimensionality

Similarity check
1. # output classes × dimensionality dot-products

(elements having bitwidth Β)
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MicroHD: step 3
Optimization phase

Lists of candidate hyperparameter values
Dimensionality: [200, 500, 1k, 2k, 3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k] 
Levels:  [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024] 
Quantization: [1, 2, 3, 4, 5, 6, 7 ,8, 9, 10, 11, 12, 13, 14, 15, 16] 

Binary design space exploration

Co-optimization approach

[200, 500, 1k, 2k, 3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k] 

Consider all hyperparameters. Which one leads to larger savings if optimized?
Greedy approach
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MicroHD: step 4
Model evaluation

A new model is defined and trained
Training
1. One-pass training
2. Finetuning based on OnlineHD [DATE’21] 

Accuracy evaluations
Is accuracy acceptable?
(higher than the 90% constraint, in this example)

input hypervector

cosine distance

learning rate

Class hypervectors 
update

Hernández-Cano et al. "Onlinehd: Robust, efficient, and single-pass online learning using hyperdimensional system.“, IEEE DATE  2021
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MicroHD: step 5
Loop and termination

What if accuracy is too low?
Discard the last optimization step
1. Return to the previous hyperparameter value
2. Halve the step size for the binary search

When does the loop terminate?
No further hyperparameter values to explore
The last HDC configuration is the produced output

[200, 500, 1k, 2k, 3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k] 

1

2

3
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Experimental Setup

MicroHD implementation
Python-based
1. PyTorch for data loader and vector manipulation
2. TorchHD for HDC functionalities

Performance evaluation
Multiple processing elements: Nvidia GeForce RTX, Intel i7, ARM Cortex-A7, ARM Cortex-M4

Benchmarking
Baselines: 10k-HDC, QuantHD [TCAD’19], OnlineHD [DATE’21], Basaklar et al. [tinyML’21] , Zeulin et al., [MLSys’23] 
Datasets: ISOLET, UCIHAR, MNIST, FMNIST, PAMAP, Connect-4
Accuracy thresholds: 0.5%, 1.0%, 5.0%

Hernández-Cano et al. "Onlinehd: Robust, efficient, and single-pass online learning using hyperdimensional system.“, IEEE DATE  2021
Imani et al. "Quanthd: A quantization framework for hyperdimensional computing." IEEE TCAD, 2019

Basaklar et al. "Hypervector design for efficient hyperdimensional computing on edge devices." tinyML’21
Zeulin et al. "Resource-Efficient Federated Hyperdimensional Computing." MLSys’23
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Experimental Results
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Average compressions of:
10.8× (<0.5% accuracy drop)
34.2× (<1.0% accuracy drop)
60.8× (<5.0% accuracy drop)

Average performance gains of:
3.3× (<0.5% accuracy drop)
13.3× (<1.0% accuracy drop)
40.2× (<5.0% accuracy drop)
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Experimental Results

Comparison with previous works
Previous works DO NOT ensure desired accuracy levels
1. Consider common benchmarks
2. Take the best point in previous works’ Pareto curve
3. Run MicroHD imposing equivalent accuracy thresholds

QuantHD [TCAD’19]  +7.5×
OnlineHD [DATE’21]  +1.9×
Basaklar et al. [tinyML’21] +1.3×
Zeulin et al., [MLSys’23] +6.4×

Compression improvements Higher compression while also ensuring 
target accuracy levels. How?

Co-optimization of HDC hyperparameters

MicroHD takes 2h on GPU 
Exhaustive explorations would take years 
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MicroHD for tinyML: a practical implementation 

ID VECTORS

LEVEL HYPERVECTORS

ENCODED HYPERVECTOR

CLASS HYPERVECTORS

HDC classification using Arduino UNO

Arduino UNO
1. SRAM:  2 KB
2. Flash:  32 KB

DIMENSIONALITY = 400

ID Hypervectors 
784

Level 
Hypervectors 

4

Class 
Hypervectors 

10

Store in FlashLoad in SRAM

Baseline HDC requires 2.5MB!

MicroHD

MNIST image
28x28px

Inference performance: 75ms / image
Accuracy degradation: <5%
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Conclusion and future works
MicroHD optimization methodology
1. First accuracy-driven optimization for HDC workloads
2. Efficient exploration of the design space
3. Co-optimization of HDC hyperparameters
4. When compared to the state-of-the-art:

• Compression gains up to 7×
• Performance gains up to 6×

(for <1% accuracy degradation)

Future works
1. HW-SW Co-design optimization for processing in-memory (PIM) HDC
2. Extending MicroHD including memory and performance constraints
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This presentation in this publication was presented at the tinyML® Research Symposium 2024. The content 
reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this 
publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the 
authors and their respective companies and may contain copyrighted material. As such, it is strongly 
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions 
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org


