
System Energy Efficiency Lab

seelab.ucsd.edu

Flavio Ponzina and Prof. Tajana Rosing
System Energy Efficiency Lab
Department of Computer Science and Engineering
University of California San Diego (UCSD)

Contact: fponzina@ucsd.edu

2

Hyperdimensional Computing (HDC)

Brain-inspired computing approach
1. Distributed feature representation in a holistic high-dimensional space
2. Lightweight training and inference
3. Robustness against errors/noise
4. Well-suited for hardware acceleration

� (x) Encoding: �

Di
sta

nc
e

x

Similarity check

Query hypervector (HV)

Class hypervectors

Encoding: �
� (y)

y

class label

DNA sequencing

Mass spectrometry

Voice recognition

Autonomous driving

Applications

3

Encoding function: two examples

×
×
×
×
×

Level HVs ID HVs
Input data

+
+
+
+
=

Encoded HV

Input data
×

[1, F]
[F, D]

Encoded HV

[1, D]

Projection Matrix

=

ID-level Encoding

Non-linear Projection Encoding

4

HDC Optimizations

Dimensionality

Objective: Finetune HDC hyperparameters to reduce resource requirements
 What are HDC hyperparameters?
Dimensionality, quantization bitwidth, sparsity, bandwidth, learning rate, …

Bitwidth

Encoding-based

From integer to binary
From 10k to 1k dimensions

Num. of level hypervectors

5

Related works and challenge
Previous works exploring dimensionality reduction
1. QuantHD [TCAD’19],
2. OnlineHD [DATE’21],
3. DOMINO [ICCAD’23]

Previous works exploring quantization
1. QuantHD [TCAD’19],
2. ManiHD [DATE’21],
3. QubitHD [arXiv’22]

How to select proper HDC hyper-parameters while
ensuring target accuracy levels?

Hernández-Cano et al. "Onlinehd: Robust, efficient, and single-pass online learning using hyperdimensional system.“, IEEE DATE 2021
Imani et al. "Quanthd: A quantization framework for hyperdimensional computing." IEEE TCAD, 2019

Wang et al. "DOMINO: Domain-Invariant Hyperdimensional Classification for Multi-Sensor Time Series Data." IEEE ICCAD 2023
Zou et al. "Manihd: Efficient hyper-dimensional learning using manifold trainable encoder." IEEE DATE 2021
Bosch et al. "QubitHD: A stochastic acceleration method for HD computing-based machine learning." arXiv 2022

MicroHD optimization

MicroHD: overview

HDC analysis
Memory and
computing

requirements
HDC

optimization
Model

creation
Accuracy
control

accuracy threshold

Hyperparams

Dimensionality,
Quantization,
…

discard & stop

Hyperparam
selection

Tunable hyper-params?

Optimized HDC

Input
feature

size

Encoding
method

Baseline HDC
implementation

6

7

MicroHD: step 1
HDC Analysis

HDC analysis
Baseline HDC

model
List of adjustable
hyperparameters

Encoding method: ID-Level encoding
Quantization scheme: integer (16-bit)
Input Features: 50
Output Classes: 10
Hyperspace dimensionality: 10k
#Levels: 1024
Accuracy: 95%

8

MicroHD: step 2
Resource requirements

How much memory does the application need?
Encoding
1. ID hypervectors (binary, size = # input features × dimensionality)
2. Level hypervectors (binary, size = # levels × dimensionality)
Model
1. Class hypervectors (bitwidth Β, size = # output classes × dimensionality)

How many bitwise operations does the application need?
Encoding
1. # bindings = dimensionality
2. # bundlings = dimensionality

Similarity check
1. # output classes × dimensionality dot-products

(elements having bitwidth Β)

9

MicroHD: step 3
Optimization phase

Lists of candidate hyperparameter values
Dimensionality: [200, 500, 1k, 2k, 3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k]
Levels: [2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
Quantization: [1, 2, 3, 4, 5, 6, 7 ,8, 9, 10, 11, 12, 13, 14, 15, 16]

Binary design space exploration

Co-optimization approach

[200, 500, 1k, 2k, 3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k]

Consider all hyperparameters. Which one leads to larger savings if optimized?
Greedy approach

10

MicroHD: step 4
Model evaluation

A new model is defined and trained
Training
1. One-pass training
2. Finetuning based on OnlineHD [DATE’21]

Accuracy evaluations
Is accuracy acceptable?
(higher than the 90% constraint, in this example)

input hypervector

cosine distance

learning rate

Class hypervectors
update

Hernández-Cano et al. "Onlinehd: Robust, efficient, and single-pass online learning using hyperdimensional system.“, IEEE DATE 2021

11

MicroHD: step 5
Loop and termination

What if accuracy is too low?
Discard the last optimization step
1. Return to the previous hyperparameter value
2. Halve the step size for the binary search

When does the loop terminate?
No further hyperparameter values to explore
The last HDC configuration is the produced output

[200, 500, 1k, 2k, 3k, 4k, 5k, 6k, 7k, 8k, 9k, 10k]

1

2

3

12

Experimental Setup

MicroHD implementation
Python-based
1. PyTorch for data loader and vector manipulation
2. TorchHD for HDC functionalities

Performance evaluation
Multiple processing elements: Nvidia GeForce RTX, Intel i7, ARM Cortex-A7, ARM Cortex-M4

Benchmarking
Baselines: 10k-HDC, QuantHD [TCAD’19], OnlineHD [DATE’21], Basaklar et al. [tinyML’21] , Zeulin et al., [MLSys’23]
Datasets: ISOLET, UCIHAR, MNIST, FMNIST, PAMAP, Connect-4
Accuracy thresholds: 0.5%, 1.0%, 5.0%

Hernández-Cano et al. "Onlinehd: Robust, efficient, and single-pass online learning using hyperdimensional system.“, IEEE DATE 2021
Imani et al. "Quanthd: A quantization framework for hyperdimensional computing." IEEE TCAD, 2019

Basaklar et al. "Hypervector design for efficient hyperdimensional computing on edge devices." tinyML’21
Zeulin et al. "Resource-Efficient Federated Hyperdimensional Computing." MLSys’23

13

Experimental Results
5.8 7.2

23
.9

4.9

7.9

15
.3

9.6

14
.5 24

.4

12
.1 13
.3

13
1.4

23
.1 28
.7

24
.7

24
.5 28
.5

23
5.4

I S O L E T U C I H A R M N I S T F M N I S T P A M A P C O N N E C T - 4

CO
MP

RE
SS

IO
N

0.5% accuracy threshold 1.0% accuracy threshold 5.0% accuracy threshold

38.4

28.8

49.2

44.4

12.4

9.6

16.4

14.8

3.1

2.4

4.1

3.7

0 10 20 30 40 50 60

ARM Cortex-A7

ARM Cortex-M4

Intel i7

NVIDIA GeForce RTX

PERFORMANCE GAIN

Average compressions of:
10.8× (<0.5% accuracy drop)
34.2× (<1.0% accuracy drop)
60.8× (<5.0% accuracy drop)

Average performance gains of:
3.3× (<0.5% accuracy drop)
13.3× (<1.0% accuracy drop)
40.2× (<5.0% accuracy drop)

14

Experimental Results

Comparison with previous works
Previous works DO NOT ensure desired accuracy levels
1. Consider common benchmarks
2. Take the best point in previous works’ Pareto curve
3. Run MicroHD imposing equivalent accuracy thresholds

QuantHD [TCAD’19] +7.5×
OnlineHD [DATE’21] +1.9×
Basaklar et al. [tinyML’21] +1.3×
Zeulin et al., [MLSys’23] +6.4×

Compression improvements Higher compression while also ensuring
target accuracy levels. How?

Co-optimization of HDC hyperparameters

MicroHD takes 2h on GPU
Exhaustive explorations would take years

15

MicroHD for tinyML: a practical implementation

ID VECTORS

LEVEL HYPERVECTORS

ENCODED HYPERVECTOR

CLASS HYPERVECTORS

HDC classification using Arduino UNO

Arduino UNO
1. SRAM: 2 KB
2. Flash: 32 KB

DIMENSIONALITY = 400

ID Hypervectors
784

Level
Hypervectors

4

Class
Hypervectors

10

Store in FlashLoad in SRAM

Baseline HDC requires 2.5MB!

MicroHD

MNIST image
28x28px

Inference performance: 75ms / image
Accuracy degradation: <5%

16

Conclusion and future works
MicroHD optimization methodology
1. First accuracy-driven optimization for HDC workloads
2. Efficient exploration of the design space
3. Co-optimization of HDC hyperparameters
4. When compared to the state-of-the-art:

• Compression gains up to 7×
• Performance gains up to 6×

(for <1% accuracy degradation)

Future works
1. HW-SW Co-design optimization for processing in-memory (PIM) HDC
2. Extending MicroHD including memory and performance constraints

System Energy Efficiency Lab

seelab.ucsd.edu

Flavio Ponzina and Prof. Tajana Rosing
System Energy Efficiency Lab
Department of Computer Science and Engineering
University of California San Diego (UCSD)

Contact: fponzina@ucsd.edu

Copyright Notice

18

This presentation in this publication was presented at the tinyML® Research Symposium 2024. The content
reflects the opinion of the author(s) and their respective companies. The inclusion of presentations in this
publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the
authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org

