
1



Simulating Battery-Powered TinyML Systems 
Optimised using Reinforcement Learning in Image-

Based Anomaly Detection

Jared Ping



Motivation

- Many IoT solutions rely on battery or unreliable supply, such 
as solar.

- Increased ML capabilities = increased compute = faster 
battery drain.

- Broader and complex action set requires improved 
optimisation.

- How to improve feasibility of battery-powered tinyML IoT 
solutions?



Problem definition (1)

- TinyML research has enabled inferencing and 
training on resource-constrained hardware.

- Challenge of balancing image-based anomaly 
uploads versus performing on-device training to 
prolong deployment battery life.

- Utilising cellular medium (NB-IoT), sufficient 
bandwidth for small image upload.

- Cost of uploads and training are most costly.



Problem definition (2)

- Using RL to balance the action 
selection.

- Avoid unsuccessful training 
attempts.

- Compare against predefined 
schemes.



Related work (1)

- Liu et al. in 2019 proposes Q-
greedy reinforcement learning 
(RL) to optimise the power vs 
latency trade-off. 

- System supports on-device 
inference and cloud offloading 
capabilities.



Related work (2)

- Ren et al. in 2019 further considers 
transmission delay vs cloud compute 
capacity optimisation using RL.

- Basaklar et al. in 2022 considers RL in 
scope of tinyML system optimisation 
when performing compute in a variable 
energy environment.



Optimisation schemes (1)

Static

Determined at compile or load 
time.

Dynamic 

Behaviour adoption required or 
known conditions vary.

Autonomous

Dynamic optimisation whereby 
optimal action is self-learned.

Minimal compute required on 
system.

Increased compute required on 
system.

Potential for large compute 
requirements on system.

System cannot adjust once 
deployed.

System adopts, within defined 
constraints, to environment.

Systems adopts through its own 
learning without constraints.



Optimisation schemes (2)

- Autonomous solution implements reinforcement learning, specifically 
decayed epsilon-greedy Q-learning.

- Yields optimal results within a small dataset and is well suited to a small discrete 
environment.

- Well-suited to single-agent environment, and moderate number of state-action pairs 
yield small memory footprint that many resource-constrained MCUs can support.

- Can be pre-trained in the cloud for initial deployment. Supports ongoing learning post-
deployment.



Optimisation schemes (3)

Static approach

- Pre-defined training threshold.

- Once threshold reached, train on each anomaly 
until successful.

- Unaware of any environmental conditions.



Optimisation schemes (4)

Dynamic approach

- Initially defined training threshold.

- Upon training failure, increment training 
threshold.

- Upon consecutive training successes, 
decrement training threshold.

- Reacts to environment in pre-defined way.



Optimisation schemes (5)

Autonomous approach

- No pre-/initially defined training threshold.

- Training thresholds determined through self-
learning of varying environment conditions.

- Focuses on learning pre-deployment, before 
eventually exploiting what is learned post-
deployment.

- Action triggered by anomaly count determined from 
learned Q-table.



System simulation (1)

- Simulate core functional blocks required to 
implement a battery-powered tinyML anomaly 
detection system.

- Consumption profile modelled using low cost, 
easily sourced components selected for possible 
deployable solution.

- System exposed to simulated environments with 
varying anomaly occurrence ratios.

- Determine the average deployment battery life per 
optimisation scheme.



System simulation (2)

- Simulated system emulates a single-use ideal battery offering 5V over a battery 
capacity of 3.5 Ah, yielding 17.5 Wh of deliverable energy.

- Mitigates variance in discharge profiles of different cell chemistries.



System simulation (3)

- On-device training behaviour is modelled 
to cater for variance in training, assuming 
relative consistency in data quality.

- Simulating MCUNet VWW model requiring 
478 KB and 190 KB of MCU flash and 
RAM, respectively.



Benchmarks and results (1)

- Four benchmark environments with varied anomaly ratios: 5%, 10%, 20% and 40%

- Anomalies are artificially inserted probabilistically to ensure the target ratios are 
achieved.

- System is configured to wake hourly to capture an image, thereafter feeding the 
captured image into the onboard neural network for anomaly detection. Termed 
sampling iteration.

- If anomaly is detected, an upload is performed, yielding an emulated classification 
from the server.



Benchmarks and results (2)

- Optimisation algorithm determines if sufficient 
anomaly classifications have been obtained to 
attempt re-training the on-device neural network 
before returning to sleep.

- Repeat sampling iterations until available battery 
energy has been depleted.

- Consumption is accumulated per available action 
and state.

- Final results measure split between each action 
and state, and total simulated deployment battery 
life.



Benchmarks and results (3)

- Autonomous optimisation yields 22.86% and 
10.86% deployment battery life improvement 
versus static and dynamic respectively.

- Further improvements through ongoing 
learning were mitigated by the compute 
requirement.

- Sleep consumption plays larger role in longer 
deployment durations.



Benchmarks and results (4)



Deployability

- Small memory footprint of 800 B to support the 
simulated Q-table.

- Ideal deployment would utilise a pilot system to collect 
initial training data in different conditions to enable pre-
learning on the cloud rather than device.

- Ongoing learning can be utilised, and selectively 
enabled on desired systems, after which updated Q-
table can be shared with other deployment systems.

- Upload mediums and encryption should be carefully 
considered for anomaly data uploads.



Conclusion and future work

- TinyML functionality continues to grow, and enhance value in several sectors.

- Power consumption of such capabilities always need to be considered and optimised, 
particularly for battery-powered solutions.

- RL can be a powerful tool in achieving this, with decayed epsilon-greedy Q-learning 
proving a capable solution in balancing anomaly uploads and on-device training.

- Future work includes physical experiment to validate real-world performance of the 
simulated system.



Thank you
Any questions/comments?
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