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Executing PyTorch on the Edge =

I\ ExecuTorch

PyTorch Edge

» ExecuTorch (alpha release)
— Export and PyTorch 2.x-based
— i0S, Android, Embedded
— On-device generative Al support

Shipped on Ray-Ban|Meta Smart Glasses and Quest 3 VR Headsets.
Supporting Meta Apps (we have begun the rollout of ExecuTorch with Instagram and are integrating with
Meta’s Family of Apps)

»  PyTorch Mobile (Legacy)
— TorchScript-based
— i0S, Android



Status and Timeline

Alpha - April 2024
Generative Al support

l

|

Preview / MVP - Oct 2023
Hardware partnerships

Early user feedback

Code access

|

Beta - Sept 2024
Hardening

Strong performance
Community involvement
Compatibility policy



Focus

e Portability
o Developers can run on wide range of devices. Runtime is 40KB

e Productivity
o Developers can easily customize and deploy to production from
original PyTorch models

e Performance
o Provide good performance through compilation



Problem Statement

PyTorch
Program
=

torch.nn.Module




ExecuTorch Overview
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Benefit #1: Export-Based

Export
PyTorch Exported
torch.nn.Module PP

\ /
Y

PyTorch 2.x export mechanism

e Export thatis concise yet can capture wide range of dynamism
e Standardized Core ATen Operators (~300)

e Consistency between authoring and deployment



Benefit #2: PyTorch Ecosystem

Export Compile Load Inference
PyTorch Exported ExecuTorch ExecuTorch
Program » Graph » Program » Runtime »
No intermediate conversion
Legacy ExecuTorch

Convert to 3rd party formats through HW-specific toolchains X

Delegate to specialized HW through consistent entry-points

Lack of debugging and profiling tools X

Native debugging and profiling through SDK

Conversion failure X

Progressive lowering to delegate kernels




Benefit #3: Modularity

Compile

ExecuTorch
»

ExecuTorch instruction |

ExecuTorch instruction |

ExecuTorch instruction |

ExecuTorch instruction |

__________‘_____.l

Developers can “pick and choose” compilations and transformation steps
through well-defined Python APls.



Benefit #3: Modularity

Compile

: Delegate to Custom Memory

¢

torch.export() lowered_module = to_backend(
converted_graph,
BackendPartitioner,

ExecuTorch
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prepared_graph = prepare_pt2e(
pre_autograd_graph, quantizer

converted_graph = convert_pt2e(
) prepared_graph



Benefit #4: 3rd Party Compilers and OSS Ecosystem

Compile
_____________________________________ -
|
Delegate to :
, Apple k| |
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Qualcomm

ExecuTorch instruction |

ExecuTorch instruction |

ExecuTorch instruction |

ExecuTorch instruction |

e Partners:
o Follows PyTorch 2.x export IR and Core ATen Operator.
o Implements well-defined compiler and quantization APls.
o Contributes to OSS

e Developers are stillin PyTorch ecosystem but can improve their performance on a target
hardware



ExecuTorch instruction |

ExecuTorch instruction |

ExecuTorch instruction |

ExecuTorch instruction |

Benefit #5: Portable and Lightweight Runtime

ExecuTorch
Runtime

Runtime is portable and lightweight. Can run
on mobile, embedded and microcontrollers.

“Embedded friendly” C++. Examples:

No need dynamic memory allocation in heap
Minimal dependency on C++ Standard Libraries
No assumption of OS and filesystems

Small runtime size. Link only selected kernels
Core ATen compliant reference kernels available
Can link against 3rd party kernels and delegates

O O O O O O

Inference

=



Visit our poster sessions

ExecuTorch Productivity SDK

ExecuTorch to Arm Delegates



On-Device Generative Al

SOTA Performance (tokens/sec on Mobile CPUs)

Android i0S
Llama 2 7B 7-8 (Samsung S22) 6 (iPhone 15 Pro)

Llama 3 8B 7-8 (One Plus 12) 5+ (iPhone 15 Pro)




Techniques Used

AOT with PyTorch 2.x Export and ExecuTorch Compilation
4-bit group-wise weight quantization

XNNPACK Delegate for best performance on CPU (WIP on
other backends)

Multi-Threading

KV Cache support through PyTorch mutable buffer

Custom ops for SDPA, with kv cache and multi-query attention
ExecuTorch Runtime + tokenizer and sampler

Improved and built on top of ExecuTorch Core stack



We welcome the community to try:

e Bring your own model to ExecuTorch!
e Colab notebook

e Android and iOS demos
o

o

Evaluation and Benchmarking
Documentations and Instructions



https://pytorch.org/executorch/main/llm/getting-started.html
https://colab.research.google.com/drive/1SUgO4pNhGJFZValD93RP6CIvr0yGJGg4
https://pytorch.org/executorch/main/llm/llama-demo-android.html
https://pytorch.org/executorch/main/llm/llama-demo-ios.html
https://github.com/pytorch/executorch/blob/main/examples/models/llama2/eval_llama.py
https://pytorch.org/executorch/main/sdk-profiling.html
https://pytorch.org/executorch/main/index.html
https://github.com/pytorch/executorch/blob/main/examples/models/llama2/README.md

Foundational improvements since last Oct

PyTorch mutable buffers

Constant data segment for more efficient serialization
Better Kernel coverage

SDK - better profiling and debugging within delegates
APl improvements/simplification

Vulkan delegate for mobile GPU

Data Type based selective build for optimizing binary size
Compatible with TorchTune

More models supported across different backends



https://github.com/pytorch/torchtune

A growing list in NLP, vision, and speech

Llama 3 8B
Llama 2 7B
Deeplab_v3
Edsr
Emformer_rnnt
Conformer
Inception_v3
Inception_v4
Mobilebert
Mobilenet v2
Mobilenet _v3
resnet18 model
resnet50 _model
Torchvision_vit

Enabled with one or more backends

Wav2letter

SqueezeSAM

Yolo v5

LSTM
LearningToPaint_model
dcgan_model
maml_omniglot_model
mnasnet1 0 model
shufflenet v2 x1 0 _model
squeezenet1 1 _model
timm__efficientnet_model
functorch_dp_cifar10_model
lennard_jones_model



Going forward

e More generative Al support through ExecuTorch
o Other backends: CoreML, Qualcomm, MPS, MediaTek
o Other LLMs: Mistral/Mixtral, Gemma, Mamba, Phi, Qwen,
Baichuan, etc.
o Multi modality: Llava, etc.

Hardening

Backward/Forward compatibility policy
Performance improvements
Community involvement

On-device training


https://github.com/pytorch/executorch/tree/main/examples/models/llava_encoder

Get Access

Please try it, get involved, give feedback.

https://pytorch.org/edge/

https://qithub.com/pytorch/executorch/



https://pytorch.org/edge/
https://github.com/pytorch/executorch/
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