tinyML Foundation

Enabling Ultra-low Power Machine Learning at the Edge

tinyML Summit April 22 - 24, 2024

www.tinyML.org

Vi

ExecuTorch: A PyTorch Software Stack for
On-Device Machine Learning Execution

Mengtao (Martin) Yuan - Engineering Manager, PyTorch Edge, Al at Meta
Mergen Nachin - Software Engineer, PyTorch Edge, Al at Meta

Opportunities

« Performance
* Privacy
AR Laptop Personalized

 Enable new
experiences

VR/MR Embedded

Mobil Wearables

Executing PyTorch on the Edge =

I\ ExecuTorch

PyTorch Edge

» ExecuTorch (alpha release)
— Export and PyTorch 2.x-based
— i0S, Android, Embedded
— On-device generative Al support

Shipped on Ray-Ban|Meta Smart Glasses and Quest 3 VR Headsets.
Supporting Meta Apps (we have begun the rollout of ExecuTorch with Instagram and are integrating with
Meta’s Family of Apps)

» PyTorch Mobile (Legacy)
— TorchScript-based
— i0S, Android

Status and Timeline

Alpha - April 2024
Generative Al support

l

|

Preview / MVP - Oct 2023
Hardware partnerships

Early user feedback

Code access

|

Beta - Sept 2024
Hardening

Strong performance
Community involvement
Compatibility policy

Focus

e Portability
o Developers can run on wide range of devices. Runtime is 40KB

e Productivity
o Developers can easily customize and deploy to production from
original PyTorch models

e Performance
o Provide good performance through compilation

Problem Statement

PyTorch
Program
=

torch.nn.Module

ExecuTorch Overview

@
4
Export Compile Load Inferan e
PyTorch Exported ExecuTorch ExecuTorch
ExecuTorch instruction |
torCh.nn'MOdUIe K ExecuTorch instruction |

|
|
| ExecuTorch instruction |
|

ExecuTorch instruction |

Edge Device

Benefit #1: Export-Based

Export
PyTorch Exported
torch.nn.Module PP

\ /
Y

PyTorch 2.x export mechanism

e Export thatis concise yet can capture wide range of dynamism
e Standardized Core ATen Operators (~300)

e Consistency between authoring and deployment

Benefit #2: PyTorch Ecosystem

Export Compile Load Inference
PyTorch Exported ExecuTorch ExecuTorch
Program » Graph » Program » Runtime »
No intermediate conversion
Legacy ExecuTorch

Convert to 3rd party formats through HW-specific toolchains X

Delegate to specialized HW through consistent entry-points

Lack of debugging and profiling tools X

Native debugging and profiling through SDK

Conversion failure X

Progressive lowering to delegate kernels

Benefit #3: Modularity

Compile

ExecuTorch
»

ExecuTorch instruction |

ExecuTorch instruction |

ExecuTorch instruction |

ExecuTorch instruction |

__________‘_____.l

Developers can “pick and choose” compilations and transformation steps
through well-defined Python APls.

Benefit #3: Modularity

Compile

: Delegate to Custom Memory

¢

torch.export() lowered_module = to_backend(
converted_graph,
BackendPartitioner,

ExecuTorch

ExecuTorch instruction |

ExecuTorch instruction |

ExecuTorch instruction |

ExecuTorch instruction |

1
1
1
1
1
? Program
1
1
1
1
1
1
1
1
1

prepared_graph = prepare_pt2e(
pre_autograd_graph, quantizer

converted_graph = convert_pt2e(
) prepared_graph

Benefit #4: 3rd Party Compilers and OSS Ecosystem

Compile
_____________________________________ -
|
Delegate to :
, Apple k| |
|
WY Delegateto [- * ExecuTorch »
. Arm) Program

Delegate to B
Qualcomm

ExecuTorch instruction |

ExecuTorch instruction |

ExecuTorch instruction |

ExecuTorch instruction |

e Partners:
o Follows PyTorch 2.x export IR and Core ATen Operator.
o Implements well-defined compiler and quantization APls.
o Contributes to OSS

e Developers are stillin PyTorch ecosystem but can improve their performance on a target
hardware

ExecuTorch instruction |

ExecuTorch instruction |

ExecuTorch instruction |

ExecuTorch instruction |

Benefit #5: Portable and Lightweight Runtime

ExecuTorch
Runtime

Runtime is portable and lightweight. Can run
on mobile, embedded and microcontrollers.

“Embedded friendly” C++. Examples:

No need dynamic memory allocation in heap
Minimal dependency on C++ Standard Libraries
No assumption of OS and filesystems

Small runtime size. Link only selected kernels
Core ATen compliant reference kernels available
Can link against 3rd party kernels and delegates

O O O O O O

Inference

=

Visit our poster sessions

ExecuTorch Productivity SDK

ExecuTorch to Arm Delegates

On-Device Generative Al

SOTA Performance (tokens/sec on Mobile CPUs)

Android i0S
Llama 2 7B 7-8 (Samsung S22) 6 (iPhone 15 Pro)

Llama 3 8B 7-8 (One Plus 12) 5+ (iPhone 15 Pro)

Techniques Used

AOT with PyTorch 2.x Export and ExecuTorch Compilation
4-bit group-wise weight quantization

XNNPACK Delegate for best performance on CPU (WIP on
other backends)

Multi-Threading

KV Cache support through PyTorch mutable buffer

Custom ops for SDPA, with kv cache and multi-query attention
ExecuTorch Runtime + tokenizer and sampler

Improved and built on top of ExecuTorch Core stack

We welcome the community to try:

e Bring your own model to ExecuTorch!
e Colab notebook

e Android and iOS demos
o

o

Evaluation and Benchmarking
Documentations and Instructions

https://pytorch.org/executorch/main/llm/getting-started.html
https://colab.research.google.com/drive/1SUgO4pNhGJFZValD93RP6CIvr0yGJGg4
https://pytorch.org/executorch/main/llm/llama-demo-android.html
https://pytorch.org/executorch/main/llm/llama-demo-ios.html
https://github.com/pytorch/executorch/blob/main/examples/models/llama2/eval_llama.py
https://pytorch.org/executorch/main/sdk-profiling.html
https://pytorch.org/executorch/main/index.html
https://github.com/pytorch/executorch/blob/main/examples/models/llama2/README.md

Foundational improvements since last Oct

PyTorch mutable buffers

Constant data segment for more efficient serialization
Better Kernel coverage

SDK - better profiling and debugging within delegates
APl improvements/simplification

Vulkan delegate for mobile GPU

Data Type based selective build for optimizing binary size
Compatible with TorchTune

More models supported across different backends

https://github.com/pytorch/torchtune

A growing list in NLP, vision, and speech

Llama 3 8B
Llama 2 7B
Deeplab_v3
Edsr
Emformer_rnnt
Conformer
Inception_v3
Inception_v4
Mobilebert
Mobilenet v2
Mobilenet _v3
resnet18 model
resnet50 _model
Torchvision_vit

Enabled with one or more backends

Wav2letter

SqueezeSAM

Yolo v5

LSTM
LearningToPaint_model
dcgan_model
maml_omniglot_model
mnasnet1 0 model
shufflenet v2 x1 0 _model
squeezenet1 1 _model
timm__efficientnet_model
functorch_dp_cifar10_model
lennard_jones_model

Going forward

e More generative Al support through ExecuTorch
o Other backends: CoreML, Qualcomm, MPS, MediaTek
o Other LLMs: Mistral/Mixtral, Gemma, Mamba, Phi, Qwen,
Baichuan, etc.
o Multi modality: Llava, etc.

Hardening

Backward/Forward compatibility policy
Performance improvements
Community involvement

On-device training

https://github.com/pytorch/executorch/tree/main/examples/models/llava_encoder

Get Access

Please try it, get involved, give feedback.

https://pytorch.org/edge/

https://qithub.com/pytorch/executorch/

https://pytorch.org/edge/
https://github.com/pytorch/executorch/

Copyright Notice
This presentation in this publication was presented at the tinyML® Summit 2024. The content reflects the

opinion of the author(s) and their respective companies. The inclusion of presentations in this publication
does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of the
authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyml.org

51

