

ExecuTorch: A PyTorch Software Stack for
On-Device Machine Learning Execution

Mengtao (Martin) Yuan - Engineering Manager, PyTorch Edge, AI at Meta
Mergen Nachin - Software Engineer, PyTorch Edge, AI at Meta

Opportunities

AR

VR/MR

Mobil
e

Laptop

• Performance
• Privacy
• Personalized

• Enable new
experiences

Wearables

Embedded

Executing PyTorch on the Edge =

PyTorch Edge
• ExecuTorch (alpha release)

– Export and PyTorch 2.x-based
– iOS, Android, Embedded
– On-device generative AI support

⭐

 Shipped on Ray-Ban|Meta Smart Glasses and Quest 3 VR Headsets.

⭐

 Supporting Meta Apps (we have begun the rollout of ExecuTorch with Instagram and are integrating with
Meta’s Family of Apps)

• PyTorch Mobile (Legacy)
– TorchScript-based
– iOS, Android

Status and Timeline

Preview / MVP - Oct 2023
Hardware partnerships
Early user feedback
Code access

Alpha - April 2024
Generative AI support

Beta - Sept 2024
Hardening
Strong performance
Community involvement
Compatibility policy

Focus

● Portability
○ Developers can run on wide range of devices. Runtime is 40KB

● Productivity
○ Developers can easily customize and deploy to production from

original PyTorch models

● Performance
○ Provide good performance through compilation

Problem Statement

PyTorch
Program

torch.nn.Module

ExecuTorch Overview

PyTorch
Program

torch.nn.Module

Export

Exported
Graph

Compile

ExecuTorch
Program

ExecuTorch
Runtime

Inference Load

“dog”

🐶

Edge Device

Benefit #1: Export-Based

PyTorch
Program

torch.nn.Module

Export

Exported
Graph

ExecuTorch
Program

ExecuTorch
Runtime

PyTorch 2.x export mechanism

● Export that is concise yet can capture wide range of dynamism

● Standardized Core ATen Operators (~300)

● Consistency between authoring and deployment

Benefit #2: PyTorch Ecosystem

PyTorch
Program

Export

Exported
Graph

Compile

ExecuTorch
Program

ExecuTorch
Runtime

Inference Load

No intermediate conversion
Legacy ExecuTorch

Convert to 3rd party formats through HW-specific toolchains ❌ Delegate to specialized HW through consistent entry-points ✅

Lack of debugging and profiling tools ❌ Native debugging and profiling through SDK ✅

Conversion failure ❌ Progressive lowering to delegate kernels ✅

Benefit #3: Modularity

Exported
Graph

Compile

ExecuTorch
Program

Developers can “pick and choose” compilations and transformation steps
through well-defined Python APIs.

Benefit #3: Modularity

Exported
Graph

Compile

ExecuTorch
Program

Custom
TransformationQuantize Delegate to

Accelerator
Memory
Planning

Example

torch.export()

prepared_graph = prepare_pt2e(
 pre_autograd_graph, quantizer
)
converted_graph = convert_pt2e(
 prepared_graph
)

lowered_module = to_backend(
 converted_graph,
 BackendPartitioner,
)

Exported Graph

Benefit #4: 3rd Party Compilers and OSS Ecosystem

Exported
Graph

Compile

ExecuTorch
Program

Delegate to
Apple

Delegate to
Arm

Delegate to
Qualcomm

.

.

.
Pick 3rd party delegation

● Partners:
○ Follows PyTorch 2.x export IR and Core ATen Operator.
○ Implements well-defined compiler and quantization APIs.
○ Contributes to OSS

● Developers are still in PyTorch ecosystem but can improve their performance on a target
hardware

ExecuTorch
Program

ExecuTorch
Runtime

Inference Load

Benefit #5: Portable and Lightweight Runtime

Runtime is portable and lightweight. Can run
on mobile, embedded and microcontrollers.

“Embedded friendly” C++. Examples:

○ No need dynamic memory allocation in heap
○ Minimal dependency on C++ Standard Libraries
○ No assumption of OS and filesystems
○ Small runtime size. Link only selected kernels
○ Core ATen compliant reference kernels available
○ Can link against 3rd party kernels and delegates

Visit our poster sessions

ExecuTorch Productivity SDK

ExecuTorch to Arm Delegates

On-Device Generative AI

Android iOS

Llama 2 7B 7-8 (Samsung S22) 6 (iPhone 15 Pro)

Llama 3 8B 7-8 (One Plus 12) 5+ (iPhone 15 Pro)

SOTA Performance (tokens/sec on Mobile CPUs)

Techniques Used

● AOT with PyTorch 2.x Export and ExecuTorch Compilation
● 4-bit group-wise weight quantization
● XNNPACK Delegate for best performance on CPU (WIP on

other backends)
● Multi-Threading
● KV Cache support through PyTorch mutable buffer
● Custom ops for SDPA, with kv cache and multi-query attention
● ExecuTorch Runtime + tokenizer and sampler
● Improved and built on top of ExecuTorch Core stack

We welcome the community to try:

● Bring your own model to ExecuTorch!
● Colab notebook
● Android and iOS demos
● Evaluation and Benchmarking
● Documentations and Instructions

https://pytorch.org/executorch/main/llm/getting-started.html
https://colab.research.google.com/drive/1SUgO4pNhGJFZValD93RP6CIvr0yGJGg4
https://pytorch.org/executorch/main/llm/llama-demo-android.html
https://pytorch.org/executorch/main/llm/llama-demo-ios.html
https://github.com/pytorch/executorch/blob/main/examples/models/llama2/eval_llama.py
https://pytorch.org/executorch/main/sdk-profiling.html
https://pytorch.org/executorch/main/index.html
https://github.com/pytorch/executorch/blob/main/examples/models/llama2/README.md

Foundational improvements since last Oct

● PyTorch mutable buffers
● Constant data segment for more efficient serialization
● Better Kernel coverage
● SDK - better profiling and debugging within delegates
● API improvements/simplification
● Vulkan delegate for mobile GPU
● Data Type based selective build for optimizing binary size
● Compatible with TorchTune
● More models supported across different backends

https://github.com/pytorch/torchtune

A growing list in NLP, vision, and speech
Enabled with one or more backends

Llama 3 8B
Llama 2 7B
Deeplab_v3
Edsr
Emformer_rnnt
Conformer
Inception_v3
Inception_v4
Mobilebert
Mobilenet_v2
Mobilenet_v3
resnet18_model
resnet50_model
Torchvision_vit

Wav2letter
SqueezeSAM
Yolo v5
LSTM
LearningToPaint_model
dcgan_model
maml_omniglot_model
mnasnet1_0_model
shufflenet_v2_x1_0_model
squeezenet1_1_model
timm_efficientnet_model
functorch_dp_cifar10_model
lennard_jones_model

Going forward

● More generative AI support through ExecuTorch
○ Other backends: CoreML, Qualcomm, MPS, MediaTek
○ Other LLMs: Mistral/Mixtral, Gemma, Mamba, Phi, Qwen,

Baichuan, etc.
○ Multi modality: Llava, etc.

● Hardening
● Backward/Forward compatibility policy
● Performance improvements
● Community involvement
● On-device training

https://github.com/pytorch/executorch/tree/main/examples/models/llava_encoder

Get Access

Please try it, get involved, give feedback.

● https://pytorch.org/edge/

● https://github.com/pytorch/executorch/

https://pytorch.org/edge/
https://github.com/pytorch/executorch/

